Thực hiện phép tính rồi tìm GTNN của biểu thức:
\(A=\left(9xy^2-6x^2y\right):\left(-3xy\right)+\left(6x^2y+2x^4\right):\left(2x^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
A/\(\left(2x^3+y^2-7xy\right)4xy^2.\)
\(=8x^4y^2+4xy^4-28x^2y^3\)
B/\(\left(2x^3-x-1\right)\left(5x-2\right)\)
\(=10x^4-5x^2-5x-4x^3+2x+2\)
\(=10x^4-5x^3-3x-4x^3+2\)
C/\(\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(=\left(2x^2-3\right)\left(2x+3\right)^2\)
D/\(\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
( Bài này áp dụng hằng đẳng thức là làm được ạ )
Bài giải:
a) (-2x5 + 3x2 – 4x3) : 2x2 = (- )x5 – 2 + x2 – 2 + (-)x3 – 2 = - x3 + – 2x.
b) (x3 – 2x2y + 3xy2) : (- x) = (x3 : -x) + (-2x2y : -x) + (3xy2 : -x)
= -2x2 + 4xy – 6y2
c)(3x2y2 + 6x2y3 – 12xy) : 3xy = (3x2y2 : 3xy) + (6x2y2 : 3xy) + (-12xy : 3xy)
= xy + 2xy2 – 4.
a) (-2x5+3x2-4x3) : 2x2
= (-2x5:2x2)-(4x3:2x2)+(3x2:2x2)
= -x3-2x+\(\dfrac{3}{2}\)
b) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
= \(\left(x^3:\dfrac{-1}{2}x\right)+\left(-2x^2y:\dfrac{-1}{2}x\right)+\left(3xy^2:\dfrac{-1}{2}x\right)\)
= \(-2x^2+4xy-6y^2\)
c) \(\left(3x^2y^2+6x^2y^3-12xy\right):3xy\)
= \(\left(6x^2y^3:3xy\right)+\left(3x^2y^2:3xy\right)+\left(-12xy:3xy\right)\)
= \(xy^2+xy-4\)
\(A=-\dfrac{9xy^2}{3xy}+\dfrac{6x^2y}{3xy}+\dfrac{6x^2y}{2x^2}+\dfrac{2x^4}{2x^2}\)
\(=-3y+2x+3y+x^2\)
\(=x^2+2x+1-1=\left(x+1\right)^2-1\ge-1\)
Dấu '=' xảy ra khi x=-1