CMR a/ nếu 2^n - 1 chia hết 9 thì 2^n - 1 chia hết cho 7
b/Tìm số dư của phép chia 2^n-1 cho 21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
Lời giải:
a) Vì \(2^6\equiv 1\pmod 9\) nên ta sẽ xét modulo $6$ của $n$
+ Nếu \(n=6k\) thì \(2^{n}-1=(2^6)^k-1\equiv 1^k-1\equiv 0\pmod 9\)
+ Nếu \(n=6k+1\Rightarrow 2^n-1=2.2^{6k}-1\equiv 2-1\equiv 1\pmod 9\)
+ Nếu \(n=6k+2\Rightarrow 2^{n}-1=2^2.2^{6k}-1\equiv 2^2-1\equiv 3\pmod 9\)
+ Nếu \(n=6k+3\Rightarrow 2^n-1=2^3.2^{6k}-1\equiv 2^3-1\equiv 7\pmod 9\)
+ Nếu \(n=6k+4\Rightarrow 2^n-1=2^4.2^{6k}-1\equiv 2^4-1\equiv 6\pmod 9\)
+ Nếu \(n=6k+5\Rightarrow 2^n-1=2^5.2^{6k}-1\equiv 2^5-1\equiv 4\pmod 9\)
Như vậy, số $n$ thỏa mãn \(2^n-1\vdots 9\) là số có dạng \(6k\)
Ta cũng có \(2^6\equiv 1\pmod 7\) nên
\(2^n-1=2^{6k}-1\equiv 1-1\equiv 0\pmod 7\)
Do đó, \(2^n-1\vdots 7\) (đpcm)
b) Tương tự phần a, để ý rằng \(2^6\equiv 1\pmod {21}\)
Ta xét modulo $6$ cho $n$ sẽ thu được những kết quả sau:
\(n=6k \Rightarrow 2^n-1\equiv 0\pmod {21}\)
\(n=6k+1\Rightarrow 2^n-1\equiv 1\pmod {21}\)
\(n=6k+2\Rightarrow 2^n-1\equiv 3\pmod {21}\)
\(n=6k+3\Rightarrow 2^n-1\equiv 7\pmod {21}\)
\(n=6k+4\Rightarrow 2^n-1\equiv 15\pmod {21}\)
\(n=6k+5\Rightarrow 2^n-1\equiv 10\pmod {21}\)