x2+ \(\sqrt{2x^2 -x+1} +2=x(3+\sqrt{2x^2-x+1})\)
giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{3x+10}=4\left(đk:x\ge-\dfrac{10}{3}\right)\Leftrightarrow3x+10=16\Leftrightarrow x=2\)
b) \(\sqrt{9x^2-6x+1}=\sqrt{x^2+8x+16}\Leftrightarrow\sqrt{\left(3x-1\right)^2}=\sqrt{\left(x+4\right)^2}\Leftrightarrow3x-1=x+4\Leftrightarrow2x=5\Leftrightarrow x=\dfrac{5}{2}\)
c) \(\sqrt{2x+1}=3\left(đk:x\ge-\dfrac{1}{2}\right)\Leftrightarrow2x+1=9\Leftrightarrow x=4\)
d) \(\sqrt{2x+1}+1=x\left(đk:x\ge1\right)\Leftrightarrow\sqrt{2x+1}=x-1\Leftrightarrow2x+1=x^2-2x+1\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)\(\Leftrightarrow x=4\)(do \(x\ge1\))
mình làm nốt câu còn lại ok
b) ta thấy x = 0 không là nghiệm của phương trình
chia cả 2 vế cho x khác 0, ta được :
\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)
đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)
Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)
Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
Vậy ...
a) Từ phương trình đã cho ta có: \(x\ge0\)
Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0
Nhân với liên hợp của vế trái ta được:
\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)
Kết hợp với phương trình đã cho ta có:
\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)
Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)
1) ĐKXĐ: \(x^2+2x-3\ge0\Leftrightarrow\left(x+1\right)^2\ge4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1\ge2\\x+1\le-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)
2) ĐKXĐ: \(2x^2+5x+3\ge0\Leftrightarrow2\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{8}\Leftrightarrow\left(x+\dfrac{5}{4}\right)^2\ge\dfrac{1}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{5}{4}\ge\dfrac{1}{4}\\x+\dfrac{5}{4}\le-\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge-1\\x\le-\dfrac{3}{2}\end{matrix}\right.\)
3) ĐKXĐ: \(x-1>0\Leftrightarrow x>1\)
4) ĐKXĐ: \(x-3< 0\Leftrightarrow x< 3\)
5) ĐKXĐ: \(x+2< 0\Leftrightarrow x< -2\)
6) ĐKXĐ: \(2a-1>0\Leftrightarrow a>\dfrac{1}{2}\)
1. \(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}>0\)
=> Biểu thức luôn luôn có nghĩa với mọi x
2. \(\sqrt{x^2-2x+2}=\sqrt{\left(x-1\right)^2+1}>0\)
=> Biểu thức luôn luôn có nghĩa với mọi x
3. \(\sqrt{x^2+2x-3}=\sqrt{\left(x+1\right)^2-4}\)
\(\Rightarrow DK:\left(x+1\right)^2\ge4\)
4. \(\sqrt{2x^2+5x+3}=\sqrt{\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2-\frac{1}{8}}\)
\(\Rightarrow DK:\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2\ge\frac{1}{8}\)
K biết đúng k.. Sai thôi
1) tc : x2 + 2x +3 = x2 + 2x + 1 + 2 = (x+1)2 +2 > 0 vs mọi x
=> căn thức có nghĩa vs mọi x
2) tương tự câu 1: x2 - 2x + 2 = (x-1)2 +1 > 0 vs mọi x
=> căn thức có nghĩa vs mọi x
3) \(\sqrt{x^2+2x-3}\)có nghĩa <=> x2+2x-3\(\ge0\)
<=> (x+1)2 - 4 \(\ge0\)
<=> (x+1)2 \(\ge4\)
<=> x+1 \(\ge2\)
<=> x \(\ge1\)
4) \(\sqrt{2x^2+5x+3}\)có nghĩa <=> 2x2 +5x +3 \(\ge0\)
<=> 2x2 + 2x + 3x + 3 \(\ge0\)
<=> (2x+3)(x+1) \(\ge0\)
<=>\(\hept{\begin{cases}2x+3\ge0\\x+1\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}2x+3\le0\\x+1\le0\end{cases}}\)
<=> \(\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge-1\end{cases}}\) hoặc \(\hept{\begin{cases}x\le\frac{-3}{2}\\x\le-1\end{cases}}\)
<=> \(\frac{-3}{2}\le x\le-1\)
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
để mk làm cho ; bài này dùng liên hợp
pt<=> \(x+1-\sqrt{x^2-2x+5}+2x+4-2\sqrt{4x+5}+x^3-2x^2+2x-1=0\) ( ĐKXĐ: \(x\ge-\frac{5}{4}\))
<=> \(\frac{x^2+2x+1-\left(x^2-2x+5\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{\left(2x+4\right)^2-4\left(4x+5\right)}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=>: \(\frac{x^2+2x+1-x^2+2x-5}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2+16x+16-16x-20}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\frac{4x-4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2-4}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\left(x-1\right)\left(\frac{4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x+4}{2x+4+2\sqrt{4x+5}}+x^2-x+1\right)=0\)
<=> x=1 ( vì \(x\ge-\frac{5}{4}\)nên cái trong ngoặc thứ 2 khác 0)
vậy x=1