K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

5 tháng 5 2017

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

5 tháng 5 2017

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

14 tháng 4 2017

Lời giải

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m\left(1\right)\\\left(3x+2m\right)^2=\left(x-m\right)^2\left(2\right)\end{matrix}\right.\)

(2)\(\Leftrightarrow9x^2+12xm+4m^2=x^2-2mx+m^2\)

\(\Leftrightarrow8x^2+14mx+3m^2=0\)

\(\Delta'_x=49m^2-24m^2=25m^2\ge0\forall m\) => (2) luôn có nghiệm với mợi m

\(x=\dfrac{5\left|m\right|-7m}{8}\) (3)

so sánh (3) với (1)

\(\dfrac{5\left|m\right|-7m}{8}\ge m\Leftrightarrow\left|m\right|\ge3m\)(4)

m <0 hiển nhiên đúng

xét khi m\(\ge\)0

\(\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^2\ge9m^2\end{matrix}\right.\)\(\Rightarrow m\le0\)\(\Leftrightarrow m=0\)

Biện luận

(I)với m <0 có hai nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-3m}{2}\\x_2=\dfrac{-m}{4}\end{matrix}\right.\)

(II) với m= 0 có nghiệm kép x=0

(III) m>0 vô nghiệm

 

 

3 tháng 5 2017

b) \(\left|2x+m\right|=\left|x-2m+2\right|\Leftrightarrow\left[{}\begin{matrix}2x+m=x-2m+2\left(1\right)\\2x+m=-\left(x-2m+2\right)\left(2\right)\end{matrix}\right.\)
Xét (1): \(2x+m=x-2m+2\Leftrightarrow x=-3m+2\).
Xét (2): \(2x+m=-\left(x-2m+2\right)\Leftrightarrow x=\dfrac{m-2}{3}\)
Biện luận:
Với mọi m phương trình đều có hai nghiệm:
\(x=-3m+2;x=\dfrac{m-2}{3}\).

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

6 tháng 4 2021

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

5 tháng 5 2017

a) \(2m\left(x-2\right)+4=\left(3-m^2\right)x\)
\(\Leftrightarrow x\left(m^2+2m-3\right)=4m-4\)
​Xét \(m^2+2m-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\).
​Với \(m=1\) thay vào phương trình ta được:
\(0x=0\) luôn nghiệm đúng \(\forall x\in R\).
​Với \(m=-3\) thay vào phương trình ta được:
\(0x=4.\left(-3\right)-4\)\(\Leftrightarrow0x=-16\) phương trình vô nghiệm.
​Xét \(m^2+2m-3\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\).
Khi đó phương trình có nghiệm duy nhất: \(x=\dfrac{4}{m+3}\).
​Biện luận:
​Với m = 1 phương trình nghiệm đúng với mọi x thuộc R.
​Với m = -3 hệ vô nghiệm.
​Với \(\left\{{}\begin{matrix}m\ne1\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{4}{m+3}\).

5 tháng 5 2017

b​) Đkxđ: \(x\ne\dfrac{1}{2}\).
\(pt\Leftrightarrow\left(m+3\right)x=\left(2x-1\right)\left(3m+2\right)\)
\(\Leftrightarrow\left(5m+1\right)x=3m+2\). (*)
​Xét \(5m+1=0\Leftrightarrow m=\dfrac{-1}{5}\) thay vào phương trình ta có:
\(0x=\dfrac{7}{5}\) phương trình vô nghiệm.
​Xét \(5m+1\ne0\Leftrightarrow m\ne\dfrac{-1}{5}\).
​Khi đó (*) có nghiệm là: \(x=\dfrac{3m+2}{5m+1}\).
​Để \(x=\dfrac{3m+2}{5m+1}\) là nghiệm của phương trình thì:
\(x=\dfrac{3m+2}{5m+1}\ne\dfrac{1}{2}\)\(\Leftrightarrow2\left(3m+2\right)\ne5m+1\)\(\Leftrightarrow m\ne-3\).
​Biện luận:
​Với \(m=-\dfrac{1}{5}\) hoặc \(m=-3\) phương trình vô nghiệm.
​Với \(\left\{{}\begin{matrix}m\ne-\dfrac{1}{5}\\m\ne-3\end{matrix}\right.\) phương trình có nghiệm duy nhất là: \(x=\dfrac{3m+2}{5m+1}\).

17 tháng 5 2021

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

19 tháng 5 2021

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1

6 tháng 4 2017

a)

\(\left\{{}\begin{matrix}\left(2m-1\right)^2-4\left(m^2-m\right)\ge0\left(1\right)\\\dfrac{1}{m^2-m}>0\left(2\right)\\\dfrac{2m-1}{m^2-m}>0\left(3\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow m^2-m>0\Rightarrow\left[{}\begin{matrix}m< 0\\m>1\end{matrix}\right.\) (I)

Kết hợp \(\left(2\right)\Rightarrow\left(3\right)\Leftrightarrow2m-1>0\Rightarrow m>\dfrac{1}{2}\)(II)

\(\left(1\right)\Leftrightarrow4m^2-4m+1-4m^2+4m=1\ge0\forall m\) (III)

Từ (I) (II) (III) \(\Rightarrow m>1\)

Kết luận nghiệm BPT m>1

6 tháng 4 2017

b)

\(\left\{{}\begin{matrix}\left(m-2\right)^2-\left(m+3\right)\left(m-1\right)\ge0\left(1\right)\\\dfrac{m-2}{m+3}< 0\left(2\right)\\\dfrac{m-1}{m+3}>0\left(3\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow m^2-4m+4-m^2-2m+3=-6m+7\ge0\Rightarrow m\le\dfrac{7}{6}\)(I)

\(\left(2\right)\Leftrightarrow-3< m< 2\) (2)

\(\left(3\right)\Leftrightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)(3)

Nghiệm Hệ BPT là: \(1< m\le\dfrac{7}{6}\)

5 tháng 3 2021

2.

b, \(-4< \dfrac{2x^2+mx-4}{-x^2+x-1}< 6\)

\(\Leftrightarrow\left\{{}\begin{matrix}-4< \dfrac{2x^2+mx-4}{-x^2+x-1}\left(1\right)\\\dfrac{2x^2+mx-4}{-x^2+x-1}< 6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow4\left(x^2-x+1\right)>2x^2+mx-4\)

\(\Leftrightarrow2x^2-\left(m+4\right)x+8>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2+8m-48< 0\Leftrightarrow-12< m< 4\)

\(\left(2\right)\Leftrightarrow-6\left(x^2-x+1\right)< 2x^2+mx-4\)

\(\Leftrightarrow8x^2+\left(m-6\right)x+2>0\)

Yêu cầu bài toán thỏa mãn khi \(\Delta=m^2-12m-28< 0\Leftrightarrow-2< x< 14\)

Vậy \(m\in\left(-2;4\right)\)

5 tháng 3 2021

2.

a, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-4\right)x^2+\left(1+m\right)x+2m-1>0\) có nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-4>0\\\Delta=m^2+2m+1-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m>5\)