Tìm giá trị lớn nhất
B = 2x^2 + 3x + 2
Tìm giá trị lớn nhât
C = -2x^2 - 4x + 2
giải chi tiết giùm mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{8x-4x^2-5}\)
Xét mẫu: \(8x-4x^2-5=-4x^2+8x-4-1=-\left(4x^2-8x+4\right)-1=-\left(2x-2\right)^2-1\)
Vì \(-\left(2x-2\right)^2\le0\Rightarrow-\left(2x-2\right)^2-1\le-1\)
Nên \(\frac{2}{8x-4x^2-5}\le\frac{2}{-1}\le-2\)
Vậy giá trị lớn nhất của \(\frac{2}{8x-4x^2-5}\)là-2
\(\frac{4x^2-6x+5}{2x-1}=2x-2+\frac{3}{2x-1}\)
Để biểu thức có giá trị nguyên thì \(\left(2x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Với 2x - 1 = 1 => 2x = 2 => x = 1
2x - 1 = -1 => 2x = 0 => x = 0
2x - 1 = 3 => 2x = 4 => x = 2
2x - 1 = -3 => 2x = -2 => x = -1
Vậy x = {1;0;2;-1}
TC: B=2x2 + 3x + 2
=2(x2 + \(\frac{3}{2}\)x+1)
=2\(\left(\left(x^2+2x.\frac{3}{4}+\frac{9}{16}\right)+\frac{7}{16}\right)\)
=2\(\left(x+\frac{3}{4}\right)^2\)+\(\frac{7}{8}\)
Vì 2\(\left(x+\frac{3}{4}\right)^2\)\(\ge\)0 với mọi x\(\)
\(\Rightarrow\)2\(\left(x+\frac{3}{4}\right)^2\) + \(\frac{7}{8}\)\(\ge\)\(\frac{7}{8}\)
Dấu"=" xảy ra \(\Leftrightarrow\) \(\left(x+\frac{3}{4}\right)^2\)=0
\(\Leftrightarrow\)\(x+\frac{3}{4}\)=0
\(\Leftrightarrow\)x=\(\frac{-3}{4}\)
Vậy....
Tìm x nguyên dể biểu thức có giá trị nguyên
B = x - 3 / 2x - 1
C = 4x^2 - 3x + 5
giải chi tiết giùm nha
đề như thế này hả B=\(\frac{x-3}{2x-1}\) hayB=\(1-\frac{3}{2x-1}\)
câu 1 nếu theo đề thì để B nguyên khi 2x-1 thuộc ước của 3 thay vào là xong
a: \(-2x^2-8x+1\)
\(=-2x^2-8x-8+9\)
\(=-2\left(x^2+4x+4\right)+9\)
\(=-2\left(x+2\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(-5x^2-y^2-4xy+4x+3\)
\(=\left(-4x^2-4xy-y^2\right)+\left(-x^2+4x-4\right)+7\)
\(=-\left(2x+y\right)^2-\left(x-2\right)^2+7< =7\forall x,y\)
Dấu '=' xảy ra khi 2x+y=0 và x-2=0
=>x=2 và y=-2x=-4
a/ \(M=x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Vậy Min M = 11/4 khi x - 3/2 = 0 => x = 3/2
b/ \(N=-\left(4x^2-\frac{2}{8}x+5\right)\)
\(=-\left[\left(2x\right)^2-2.2x.\frac{1}{16}+\left(\frac{1}{16}\right)^2-\left(\frac{1}{16}\right)^2+5\right]\)
\(=-\left(2x-\frac{1}{16}\right)^2-\frac{1279}{256}\ge-\frac{1279}{256}\)
Vậy Min N = -1279/256 khi 2x - 1/16 = 0 => 2x = 1/16 => x = 1/32
a)\(A=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu = khi \(x=\frac{-1}{2}\)
Vậy MinA=10 khi \(x=\frac{-1}{2}\)
b)\(B=3x^2-6x+1\)
\(=3x^2-6x+3-2\)
\(=3\left(x^2-2x+1\right)-2\)
\(=3\left(x-1\right)^2-2\ge-2\)
Dấu = khi \(x=1\)
Vậy MinB=-2 khi \(x=1\)
c)\(C=x^2-2x+y^2-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)