mn ơi giúp em vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\sqrt{64a^2}+2a=8a+2a=10a\)
b: \(B=3\sqrt{9a^6}-6a^3=3\cdot3a^3-6a^3=3a^3\)
a) \(A=\sqrt{64a^2}+2a=8\left|a\right|+2a\)
b) \(B=3\sqrt{9a^6}-6a^3=9\left|a^3\right|-6a^3\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=4\sqrt{41}\left(cm\right)\\AC=5\sqrt{41}\left(cm\right)\end{matrix}\right.\)
Bài 1:
c) (1) S+ O2 -> SO2
(2) SO2 + 2 NaOH -> Na2SO3 + H2O
(3) SO2 + 1/2 O2 \(⇌\left(to,xt\right)\) SO3
(4) SO3 + H2O -> H2SO4
(5) H2SO4 + 2 NaOH -> Na2SO4 +2 H2O
(6) Na2SO4 + BaCl2 -> BaSO4 + 2 NaCl
(7) SO3 ra chất gì mũi tên xuống?
(8) SO2 + H2O \(⇌\) H2SO3
(9) H2SO3+ Na2SO4 -> H2SO4 + Na2SO3
(10) Na2SO3+ H2SO4 -> Na2SO4 + SO2 + H2O
Bài 1:
a) (1) CaCO3 + Ba(OH)2 -> BaCO3 + Ca(OH)2
(2) CaCO3 -to-> CaO + CO2
(3) CaCO3 ra CaCO3?
(4) CaO + 2 HCl -> CaCl2 + H2O
a: \(=\dfrac{-14}{7}+\dfrac{4}{2}=-2+2=0\)
b: \(=\dfrac{1}{7}+\dfrac{6}{7}\cdot\dfrac{1}{6}=\dfrac{1}{7}+\dfrac{1}{7}=\dfrac{2}{7}\)
a: \(=\dfrac{-14}{7}+\dfrac{4}{2}=-2+2=0\)
b: \(=\dfrac{1}{7}+\dfrac{6}{7}\cdot\dfrac{1}{6}=\dfrac{1}{7}+\dfrac{1}{7}=\dfrac{2}{7}\)
Bài 3:
Diện tích là:
\(15\cdot6=90\left(m^2\right)\)
Bài 3:
Gọi cd,cr lần lượt là a,b(m;a,b>0)
Áp dụng tc dtsbn:
\(\dfrac{b}{a}=\dfrac{2}{5}\Rightarrow\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a+2b}{10+4}=\dfrac{42}{14}=3\\ \Rightarrow\left\{{}\begin{matrix}a=15\\b=6\end{matrix}\right.\\ \Rightarrow S_{hcn}=ab=90\left(m^2\right)\)
Bài 4:
Gọi cd,cr lân lượt là a,b(m;a,b>0)
Đặt \(\dfrac{a}{4}=\dfrac{b}{3}=k\Rightarrow a=4k;b=3k\)
\(ab=300\left(m^2\right)\\ \Rightarrow12k^2=300\\ \Rightarrow k^2=25\Rightarrow k=5\left(k>0\right)\\ \Rightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)
Vậy ...
Bài 5:
Gọi số hs 7A,7B,7C,7D ll là a,b,c,d(hs;a,b,c,d∈N*)
Áp dụng tc dtsbn:
\(\dfrac{a}{11}=\dfrac{b}{12}=\dfrac{c}{13}=\dfrac{d}{14}=\dfrac{2b-a}{24-11}=\dfrac{39}{13}=3\\ \Rightarrow\left\{{}\begin{matrix}a=33\\b=36\\c=39\\d=42\end{matrix}\right.\)
Vậy ...
a;b tìm nhân tử chung ở mẫu bạn tự làm nhé
c, \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)ĐK : \(x\ne\pm\frac{1}{4}\)
\(\Leftrightarrow-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{8+6x}{\left(4x-1\right)\left(4x+1\right)}\)
\(\Leftrightarrow-\frac{3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)-8-6x}{\left(4x+1\right)\left(4x-1\right)}\)
\(\Rightarrow-12x-3=8x-2-8-6x\Leftrightarrow-14x=-7\Leftrightarrow x=\frac{1}{2}\)
i, \(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{x^2+2x-3}\)ĐK : \(x\ne-3;1\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)-\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-1\right)}=\frac{4}{\left(x+3\right)\left(x-1\right)}\)
\(\Rightarrow x^2+x-2-x^2-4x-3=4\Leftrightarrow-3x-5=4\Leftrightarrow x=-3\)(ktm)
Vậy pt vô nghiệm
g, \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)ĐK : \(x\ne1\)
\(\Leftrightarrow\frac{x^2+x+1+2x^2-5}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)
\(\Rightarrow3x^2+x-4=4x-4\Leftrightarrow3x^2-3x=0\Leftrightarrow x=0\left(tm\right);x=1\left(ktm\right)\)
h, \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)ĐK : \(x\ne\frac{1}{5};\frac{3}{5}\)
\(\Leftrightarrow\frac{3\left(5x-3\right)-2\left(5x-1\right)}{\left(5x-1\right)\left(5x-3\right)}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)
\(\Rightarrow15x-9-10x+2=-4\Leftrightarrow5x=3\Leftrightarrow x=\frac{3}{5}\)(ktm)
Vậy pt vô nghiệm