tinh tong :
A =1+2+3+...............+2015
B=1.5+2.6+3.7+.................+100.101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.5+2.6+3.7+...+20.24
A=1.(2+3) + 2.(3+3) + 3.(4+3) + ... + 20.(21+3)
A=1.2+3 + 2.3 +6 + 3.4 +9 + ... + 20.21 + 60
A= (1.2+2.3+3.4+...+20.21) + (3+6+9+...+60)
Tính B= 1.2 + 2.3 + 3.4 +...+ 20.21
3.B= 1.2.3 + 2.3.3 + 3.4.3 +...+ 20.21.3
3B= 1.2.3 + 2.3.(4-1) + 3.4. (5-2) + ... + 20.21. (22-19)
3B= 20.21.22 suy ra B= 3080
Tính 3+6+9+...+60= [(60-3):3+1](3+60):2=630
Vậy A= 3080 + 630=3710
a) Giả sử \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\)
- Với \(n=1:\)
\(S_n=\dfrac{1.\left(1+1\right)\left(2.1+1\right)}{6}=\dfrac{2.3}{6}=1\left(luôn.đúng\right)\)
- Với \(n=k:\)
\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\left(\forall k\inℕ^∗\right)\left(luôn.đúng\right)\)
- Với \(n=k+1:\)
\(S_{k+1}=1^2+2^2+3^2+...+k^2+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+7k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+3k+4k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k\left(k+\dfrac{3}{2}\right)+4\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(2k+4\right)\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(k+2\right)\left(2k+3\right)\right]}{6}\) (Đúng với \(n=k+1\))
Vậy \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\left(dpcm\right)\)
Bài 1 :
\(S=1.3+3.5+5.7+...+99.101=3+15+35+...9999\)
Ta thấy :
\(3=2^2-1\)
\(15=4^2-1\)
\(35=6^2-1\)
.....
\(9999=100^2-1\)
\(\Rightarrow S=2^2+4^2+...+100^2-\left(1\right).\left(\left(100-2\right):2+1\right)\)
\(\Rightarrow S=\dfrac{100.\left(100+1\right)\left(2.100+1\right)}{6}-51\)
\(\Rightarrow S=\dfrac{100.101.201}{6}-51=338299\)