Mấy ban CTV ơi giup mih cau 30 vs 31 vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bài 30:
Ta có \(y=x^4-2mx^2\Rightarrow y'=4x^3-4mx\)
Để ĐTHS có 3 điểm cực trị thì \(y'=4x^3-4mx=0\) phải có ba nghiệm phân biệt
\(\Leftrightarrow x(x^2-m)=0\) có ba nghiệm phân biệt. Do đó \(m>0\)
Khi đó, gọi ba điểm cực trị lần lượt là:
\(A(0,0);B(\sqrt{m},-m^2);C(-\sqrt{m},-m^2)\)
Từ đây, ta viết được PTĐT $BC$ là: \(y=-m^2\)
Sử dụng công thức tính khoảng cách từ 1 điểm đến đường thẳng:
\(d(A,BC)=\frac{|m^2|}{\sqrt{1^2+0^2}}=m^2\)
\(BC=\sqrt{(\sqrt{m}--\sqrt{m})^2+(-m^2+m^2)^2}=2\sqrt{m}\)
\(\Rightarrow S_{ABC}=\frac{d(A,BC).BC}{2}=m^2\sqrt{m}<1\). Mà \(m>0\) nên
\(m^2\sqrt{m}<1\Leftrightarrow 0<\sqrt{m^5}<1\Leftrightarrow 0< m<1\).
Đáp án D.
Bài 31:
Đề bài sai rồi nhé, hàm thứ hai phải là \(y=x^3-3x^2-m+2\)
PT hoành độ giao điểm:
\(x^3-3x^2-m+2+mx=0\)
\(\Leftrightarrow (x-1)[x^2-2x+(m-2)]=0\)
PT trên có một nghiệm là $1$. Để hai đths cắt nhau tại ba điểm phân biệt thì PT \(x^2-2x+(m-2)=0(1)\) phải có hai nghiệm pb khác $1$
\(\Rightarrow \left\{\begin{matrix} 1-2-2+m\neq 0\\ \Delta'=3-m>0\end{matrix}\right.\Rightarrow m<3\)
Nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì áp dụng định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-2\end{matrix}\right.\)
Như vậy, độ dài các đoạn $AB,BC,AC$ nằm trong các giá trị:
\(\left\{\begin{matrix} |x_1-1|\sqrt{m^2+1}\\ |x_2-1|\sqrt{m^2+1}\\ |x_1-x_2|\sqrt{m^2+1}\end{matrix}\right.\)
Ta thấy \(x_1+x_2=2\Rightarrow x_1-1=1-x_2\Rightarrow |x_1-1|=|x_2-1|\)
Do đó \(|x_1-1|\sqrt{m^2+1}=|x_2-1|\sqrt{m^2+1}\), tức là luôn tồn tại hai đoạn thẳng nối hai giao điểm có độ dài bằng nhau (thỏa mãn đkđb) , với mọi $m$ nằm trong khoảng xác định, hay \(m<3\)
Đáp án D.
\(3x^2-2x.\left(5+1,5x\right)+10\)
\(=3x^2-2x.5-2x.1,5x+10\)
\(=3x^2-3x^2-10x+10\)
\(=10-10x\)
\(=10.\left(1-x\right)\)
\(30-9.\left(x-3\right)=-42\)
\(9.\left(x-3\right)=72\)
\(x-3=8\)
\(x=11\)
x phải lớn hơn 184 và nhỏ hơn 186
=> x=37
Chỉ có 37 mới thỏa mãn y/c đề bài
k nhé
2^100 = (2^10)^10 = 1024^10 > 1000^10 = 10^30.
2^100 = 2*(2^33)^3 < 2* (10^10)^3 (vì 2^33 < 10^10) = 2* 10^30.
→ 10^10 < 2^100 < 2*10^30
Vậy 2^100 có 31 chữ số.
câu 30 y'=0 ta có 3 nghiệm x=0 và x=+-căn(m) vs x=+-căn(m)=>y=-m2 =>A(-căn(m);-m^2).B(căn(m);-m^2)=> kc AB=2 căn(m) tại x=0 y=0 =>O(0;0) vì hàm có 3 cực trị =>tam giác 0AB cân => m^2 là đường cao Soab=(2 căn(m)*m^2)/2 =căn(m)^3<1 gọi căn m là x => x^3-1<0 áp dụng hằng đt => x-1<0 => x<1 =>m<1