\(\dfrac{1}{2x+7}=\dfrac{3}{4}\)
Giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
a. \(\dfrac{-3}{12}+\dfrac{1}{-4}=\dfrac{-3}{12}+\dfrac{-3}{12}=\dfrac{-3-3}{12}=\dfrac{-6}{12}=\dfrac{-1}{2}\)
b. \(\dfrac{5}{12}+\dfrac{-3}{28}=\dfrac{35}{84}+\dfrac{-9}{84}=\dfrac{35+\left(-9\right)}{84}=\dfrac{26}{84}=\dfrac{13}{42}\)
c. \(\dfrac{-7}{15}+\dfrac{3}{35}=\dfrac{-49}{105}+\dfrac{9}{105}=\dfrac{-49+9}{105}=\dfrac{-40}{105}=\dfrac{-8}{21}\)
d. \(\dfrac{-5}{7}+\dfrac{-3}{4}=\dfrac{-20}{28}+\dfrac{-21}{28}=\dfrac{-20+\left(-21\right)}{28}=\dfrac{-41}{28}\)
a: \(x\cdot\dfrac{3}{4}+x=\dfrac{7}{8}\)
\(\Leftrightarrow x\cdot\dfrac{7}{4}=\dfrac{7}{8}\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
\(=-\dfrac{1}{5}\cdot\dfrac{3}{4}=-\dfrac{3}{20}\)
\(\dfrac{-4}{x}=\dfrac{x}{-49}\\ \Rightarrow x^2=\left(-4\right)\left(-49\right)\\ \Rightarrow x^2=196\\ \Rightarrow x=\pm14\)
\(\dfrac{3.6}{x-3}=\dfrac{5}{3}\\ \Rightarrow5\left(x-3\right)=3.3.6\\ \Rightarrow5\left(x-3\right)=54\\ \Rightarrow x-3=\dfrac{54}{5}\\ \Rightarrow x=\dfrac{54}{5}+3\\ \Rightarrow x=\dfrac{69}{15}\)
\(\left(2x+1\right):2=12:3\\ \left(2x+1\right):2=4\\2x+1=2\\ 2x=1\\ x=\dfrac{1}{2} \)
\(\left(2x-14\right):3=12:9\\ \left(2x-14\right):3=\dfrac{4}{3}\\ 2x-14=4\\ 2x=16\\ x=8\)
a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)
=>8x+4-18x+3=2x+1
=>-10x+7=2x+1
=>-12x=-6
hay x=1/2
b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)
=>5x-21=6x
=>-x=21
hay x=-21
`1/(x-1)-(3x^2)/(x^3-1)=(2x)/(x^2+x+1)`
ĐK:`x ne 1`
`pt<=>(x^2+x+1)/(x^3-1)-(3x^2)/(x^3-1)=(2x(x-1))/(x^3-1)`
`<=>x^2+x+1-3x^2=2x^2-2x`
`<=>4x^2-3x-1=0`
`<=>4x^2-4x+x-1=0`
`<=>4x(x-1)+x-1=0`
`<=>(x-1)(4x+1)=0`
`x ne 1=>x-1 ne 0`
`<=>4x+1=0`
`<=>x=-1/4`
Vậy `S={-1/4}`
đk: x khác -1; 3
\(\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}=\dfrac{x}{2\left(3-x\right)}\)
<=> \(\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}+\dfrac{x}{2\left(x-3\right)}=0\)
<=> \(\dfrac{x\left(x-3\right)-4x+x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=0\)
<=> \(x^2-3x-4x+x^2+x=0\)
<=> 2x2 - 6x = 0
<=> 2x(x-3) = 0
Mà x khác 3
<=> 2x = 0
<=> x = 0
\(\dfrac{1}{2x+7}=\dfrac{3}{4}\)
\(\Leftrightarrow1.4=\left(2x+7\right).3\)
\(\Leftrightarrow4=6x+21\)
\(\Leftrightarrow-6x=21-4\)
\(\Leftrightarrow-6x=17\)
\(\Leftrightarrow-6x=17:\left(-6\right)\)
\(\Leftrightarrow x=\dfrac{-17}{6}\)
Giải.
Ta có : \(\dfrac{1}{2x+7}=\dfrac{3}{4}\)
\(\Leftrightarrow3\left(2x+7\right)=1.4\)
\(\Leftrightarrow6x+21=4\)
\(\Leftrightarrow6x=-17\Leftrightarrow x=\dfrac{-17}{6}\)
Vậy \(x=\dfrac{-17}{6}\)
tik mik nha !!!