HELP ME, PLEASE!!!
Hàm số f cho bởi công thức:
f(x) \(\left\{{}\begin{matrix}5x-4\left(x\ge\dfrac{4}{5}\right)\\4-5x\left(x< \dfrac{4}{5}\right)\end{matrix}\right.\)
a) f có thể viết gọn bằng công thức nào?
b) Tìm x để f(x)=6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2x^2-5x+3}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x-3\right)}{x-1}=\lim\limits_{x\rightarrow1}2x-3=2\cdot1-3=-1\)
f(1)=4
=>\(\lim\limits_{x\rightarrow1}f\left(x\right)< >f\left(1\right)\)
=>Hàm số bị gián đoạn tại x=1
\(\lim\limits_{x\rightarrow0}\dfrac{e^{4-3x}-e^4}{x}=\lim\limits_{x\rightarrow0}\dfrac{e^4\left(e^{-3x}-1\right)}{x}=\lim\limits_{x\rightarrow0}-3e^4\left(\dfrac{e^{-3x}-1}{-3x}\right)=-3e^4\)
Hàm liên tục tại \(x=0\) khi \(3ae^4=-3e^4\Rightarrow a=-1\)
Con bạn bảo mk chỉ biết là Min F=1 khi x=2 và y=3
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x}{x\left(\sqrt{x+4}+2\right)}=\lim\limits_{x\rightarrow0^+}\dfrac{1}{\sqrt{x+4}+2}=\dfrac{1}{4}\)
\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(mx^2+2m+\dfrac{1}{4}\right)=2m+\dfrac{1}{4}\)
Hàm liên tục tại x=0 khi: \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)
\(\Leftrightarrow2m+\dfrac{1}{4}=\dfrac{1}{4}\Leftrightarrow m=0\)
\(a) \begin{cases}x=y+4\\2x+3=0\end{cases}\Leftrightarrow\begin{cases}x = y + 4\\2x = -3\end{cases}\Leftrightarrow\begin{cases}\dfrac{-3}{2} = y + 4\\x = \dfrac{-3}{2}\end{cases}\Leftrightarrow\begin{cases}y = \dfrac{-11}{2}\\x = \dfrac{-3}{2}\end{cases}\\b) \begin{cases}2x + y = 7\\3y - x = 7\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\6y - 2x = 14\end{cases}\Leftrightarrow\begin{cases}2x + y = 7\\7y = 21\end{cases}\Leftrightarrow\begin{cases}2x + 3 = 7\\y = 3\end{cases}\Leftrightarrow\begin{cases}x=2\\y=3\end{cases}\\ c) \begin{cases} 5x + y = 3 \\ -x - \dfrac{1}{5}y=\dfrac{-3}{5} \end{cases} \Leftrightarrow \begin{cases} 5x + y = 3 \\ 5x + y = 3 \end{cases} (luôn\ đúng) \Leftrightarrow Phương\ trình\ vô\ số\ nghiệm \\d) \begin{cases} 3x - 5y = -18 \\ x - 5 = 2y \end{cases} \Leftrightarrow \begin{cases} 3x - 5y = -18 \\ 3x - 6y = 15 \end{cases} \Leftrightarrow \begin{cases} x - 5 = 2.(-33)\\ y = -13 \end{cases} \Leftrightarrow \begin{cases}x = -61\\y=-33 \end{cases} \)
Lời giải:
Phương hướng giải là bạn sử dụng phương pháp thế, biểu diễn $x$ theo $y$ qua 1 trong 2 PT, sau đó thế vô PT còn lại giải PT 1 ẩn $y$
a) \(\left\{\begin{matrix}
x-6y=17\\
5x+y=23\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x=17+6y\\
5x+y=23\end{matrix}\right.\)
\(\Rightarrow 5(17+6y)+y=23\)
\(\Leftrightarrow 31y=-62\Leftrightarrow y=-2\)
$x=17+6y=17+6(-2)=5$
Vậy $(x,y)=(5,-2)$
Các phần còn lại bạn giải tương tự
b) $(x,y)=(\frac{1}{4}, 0)$
c) $(x,y)=(3, 4)$
d) $(x,y)=(\frac{79}{21}, \frac{44}{21})$
Khi \(x\ne-2\) thì \(f\left(x\right)=\dfrac{3x^2+5x-2}{x+2}\) là một hàm phân thức hoàn toàn xác định nên f(x) liên tục tại các khoảng \(\left(-\infty;-2\right);\left(-2;+\infty\right)\)(1)
\(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}\dfrac{3x^2+5x-2}{x+2}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{3x^2+6x-x-2}{x+2}\)
\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(3x-1\right)}{x+2}\)
\(=\lim\limits_{x\rightarrow-2}3x-1=3\cdot\left(-2\right)-1=-7\)
\(f\left(-2\right)=m\)
Để hàm số liên tục trên R thì hàm số liên tục tại x=2 và liên tục tại các khoảng \(\left(-\infty;-2\right);\left(-2;+\infty\right)\)(2)
Từ (1),(2) suy ra Để hàm số liên tục trên R thì hàm số liên tục tại x=2
=>\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)
=>m=-7
a: f(x)=|5x-4|
b: f(x)=6
=>|5x-4|=6
=>5x-4=6 hoặc 5x-4=-6
=>5x=10 hoặc 5x=-2
=>x=2 hoặc x=-2/5