So sánh
\(\left(\dfrac{1}{3}\right)^{500};\left(\dfrac{1}{5}\right)^{300}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)
\(=-\dfrac{1}{10}\)
9<10
=>1/9>1/10
=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)
=>\(A>-\dfrac{1}{9}\)
b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)
\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)
20<21
=>\(\dfrac{11}{20}>\dfrac{11}{21}\)
=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)
=>\(B< -\dfrac{11}{21}\)
\(\left(\dfrac{1}{2}\right)^{12}=\left(\dfrac{1}{8}\right)^3\\ \left(\dfrac{1}{3}\right)^9=\left(\dfrac{1}{27}\right)^3\\ Ta\text{ }có:\dfrac{1}{8}>\dfrac{1}{27}\\ Vậy:\left(\dfrac{1}{2}\right)^{12}>\left(\dfrac{1}{3}\right)^9\)
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)
\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)
\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)
\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)
\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)
\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)
\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
\(\Rightarrow B< \dfrac{1}{2}\)
Ta có:
\(\left(\dfrac{1}{10}\right)^{15}=\left(\left(\dfrac{1}{10}\right)^3\right)^5=\left(\dfrac{1}{1000}\right)^5\)
\(\left(\dfrac{3}{10}\right)^{20}=\left(\left(\dfrac{3}{10}\right)^4\right)^5=\left(\dfrac{81}{10000}\right)^5\)
Ta có: \(\left(\dfrac{1}{10}\right)^{15}=\left(\dfrac{1}{10}^3\right)^5=\left(\dfrac{1}{1000}\right)^5\)
\(\left(\dfrac{3}{10}\right)^{20}=\left(\dfrac{3}{10}^4\right)^5=\left(\dfrac{3}{10000}\right)^5\)
Vì \(\dfrac{1}{1000}>\dfrac{3}{10000}\) nên \(\left(\dfrac{1}{10}\right)^{15}>\left(\dfrac{3}{10}\right)^{20}\)
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)
\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)
\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)
\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\)
\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)
\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)
\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)
\(B=-1\) (2019 số -1)
Mà: \(-1< \dfrac{1}{2}\)
\(\Rightarrow B< \dfrac{1}{2}\)
\(\dfrac{1}{2^2}\); \(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1
Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:
(2020 - 2):1 + 1 = 2019 (số hạng)
Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)
\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)
\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)
\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)
\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)
Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B
a) \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)
\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)
Mà \(\frac{-1}{125}>\frac{-1}{243}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)\(2^{27}=8^9;3^{18}=9^9\)
a: Vì 0,2<1
nên hàm số \(y=\left(0,2\right)^x\) nghịch biến trên R
mà -3<-2
nên \(\left(0,2\right)^{-3}>\left(0,2\right)^{-2}\)
b: Vì \(0< \dfrac{1}{3}< 1\)
nên hàm số \(y=\left(\dfrac{1}{3}\right)^x\) nghịch biến trên R
mà \(2000< 2004\)
nên \(\left(\dfrac{1}{3}\right)^{2000}>\left(\dfrac{1}{3}\right)^{2004}\)
c: Vì 3,2>1
nên hàm số \(y=\left(3,2\right)^x\) đồng biến trên R
mà \(1,5< 1,6\)
nên \(\left(3,2\right)^{1,5}< \left(3,2\right)^{1,6}\)
d: Vì \(0< 0,5< 1\)
nên hàm số \(y=\left(0,5\right)^x\) nghịch biến trên R
mà -2021>-2023
nên \(\left(0,5\right)^{-2021}< \left(0,5\right)^{-2023}\)
A = \(\dfrac{3}{4}\) + \(\dfrac{3}{9}\) + \(\dfrac{3}{16}\) + \(\dfrac{3}{25}\) +..............+ \(\dfrac{3}{(3n)^2}\)
A = ( \(\dfrac{3}{4}\) + \(\dfrac{3}{9}\) + \(\dfrac{3}{16}\)+ \(\dfrac{3}{25}\)) +.....+ \(\dfrac{3}{(3n)^2}\)
A = 3. ( \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\))+............+ \(\dfrac{3}{(3n)^2}\)
A = 3.( \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + \(\dfrac{1}{4.4}\) + \(\dfrac{1}{5.5}\)) +............+ \(\dfrac{3}{(3n)^2}\)
Vì \(\dfrac{1}{2}\) > \(\dfrac{1}{3}\) > \(\dfrac{1}{4}\) > \(\dfrac{1}{5}\)Ta có : \(\dfrac{1}{2.2}>\dfrac{1}{2.3}>\dfrac{1}{3.3}>\dfrac{1}{3.4}>\dfrac{1}{4.4}>\dfrac{1}{4.5}>\dfrac{1}{5.5}>\dfrac{1}{5.6}\)
A > 3. ( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\)) + ............+ \(\dfrac{1}{(3n)^2}\)
A > 3. ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)) +.....+ \(\dfrac{1}{(3n)^2}\)
A > 3.( \(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)) +..............+ \(\dfrac{1}{(3n)^2}\)
A > 3. \(\dfrac{1}{3}\) +...............+ \(\dfrac{1}{(3n)^2}\)
A > 1 +..........+ \(\dfrac{1}{9n^2}\) > 1
A > 1
Ta có:
\(\left(\dfrac{1}{3}\right)^{500}=\dfrac{1^{500}}{3^{500}}=\dfrac{1}{\left(3^5\right)^{100}}=\dfrac{1}{243^{100}}\)
\(\left(\dfrac{1}{5}\right)^{300}=\dfrac{1^{300}}{5^{300}}=\dfrac{1}{\left(5^3\right)^{100}}=\dfrac{1}{125^{100}}\)
Vì 243 > 125 nên \(243^{100}>125^{100}\), do đó \(\dfrac{1}{243^{100}}< \dfrac{1}{125^{100}}\)
Vậy \(\left(\dfrac{1}{3}\right)^{500}< \left(\dfrac{1}{5}\right)^{300}\)