a) \(\dfrac{120^3}{40^3}\);
b) \(\dfrac{390^4}{130^4}\);
c) \(\dfrac{3^2}{\left(0,375\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $\dfrac{120^3}{40^3}=(\dfrac{120}{40})^3=3^3=27$
b) $\dfrac{390^4}{130^4}=(\dfrac{390}{130})^4=3^4=81$
c) $\dfrac{3^2}{(0,375)^2}=(3:0,375)^2=(3:\dfrac{3}{8})^2=8^2=64$
a, (42.43 / 21.0) .2003
= (42.43/0) .2003
= 0.2003
= 0
b, 1203/403
= (120/40)3
= 33
= 9
c, [(-2,5) .0,38 .0,4] - [(-1,25).0,62.(-0,8)]
= {[(-2,5) .0,4] .0,38} - {[(-1,25) .(-0,8)] .0,62}
= [(-1) .0,38] - (1 .0,62)
= (-0.38) - 0,62
= -1
MK chỉnh dấu ngoặc hơi loằng ngoằng
a,\(\dfrac{120^3}{40^3}=3\)
b,\(\dfrac{390^3}{130^3}=3\)
c,\(\dfrac{3^2}{\left(0,375\right)^2}=8\)
Xét số hạng tổng quát:\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow A=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}-\dfrac{1}{\sqrt{121}}\)
\(A=1-\dfrac{1}{11}=\dfrac{10}{11}\)
a) \(\left(\dfrac{1}{5}\right)^5.5^5=\left(\dfrac{1}{5}.5\right)^5=1^5=1\)
b) \(\left(0,125\right)^3.512=\left(0,512\right)^3.8^3=\left(0,512.8\right)^3=1^3=1\)
c) \(\left(0,25\right)^4.1024=\left[\left(0,25\right)^2\right]^2.32^2=\left(\dfrac{1}{6}\right)^2.32^2=\left(\dfrac{1}{6}.32\right)^2=2^2=4\)
d) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=3^3=64\)
e) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)
g) \(\dfrac{3^2}{\left(0,375\right)^2}=\left(\dfrac{3}{0,375}\right)^3=8^3=512\)
ĐK: ` x \ne 10; x \ne 0`
`120/(x-10)-3/5=120/x`
`<=>120/(x-10)-120/x=3/5`
`<=>1/(x-10) - 1/x= 1/200`
`<=> (x-x+10)/(x(x-10)) = 1/200`
`<=> 10/(x(x-10))= 1/200`
`<=> x^2-10=2000`
`<=>` \(\left[{}\begin{matrix}x=50\\x=-40\end{matrix}\right.\)
Vậy `S={50;-40}`.
`120/(x-10)-3/5=120/x(x ne 0,x ne 10)`
`<=>40/(x-10)-1/5=40/x`
`<=>200x-x(x-10)=200(x-10)`
`<=>200x-200x+2000-x^2+10x=0`
`<=>x^2-10x-2000=0`
`Delta'=25+2000=2025`
`<=>x_1=50,x_2=-40`
Vậy `S={50,-40}`
Tổng quát:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)\(=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)
\(\Rightarrow S=\dfrac{10}{11}\)
Ta có công thức tổng quát như sau:
\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right]\left[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right]}\)
\(=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)
\(=\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n+1}}\)
Áp dụng vào tổng S ta có:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{121\sqrt{120}+120\sqrt{121}}\)
\(S=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{120}}+\dfrac{1}{\sqrt{121}}\)
\(S=1-\dfrac{1}{\sqrt{121}}=1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(\dfrac{120}{x}+\dfrac{120}{x-10}=\dfrac{3}{5}\left(dkxd:x>0,x\ne10\right)\)
\(\Leftrightarrow\dfrac{120}{x}+\dfrac{120}{x-10}-\dfrac{3}{5}=0\)
\(\Leftrightarrow\dfrac{120.5\left(x-10\right)+5.120x-3x\left(x-10\right)}{5x\left(x-10\right)}=0\)
\(\Leftrightarrow600x-6000+600x-3x^2+30x=0\)
\(\Leftrightarrow-3x^2+1230x-6000=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\approx405\\x\approx5\end{matrix}\right.\)\(\left(tmdk\right)\)
Vậy ...
Giải:
a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=30^3=2700\)
b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=30^4=810000\)
c) \(\dfrac{3^2}{\left(0,375\right)^2}=\left(\dfrac{3}{0,375}\right)^2=8^2=64\)
Đáp số: a) 2700; b) 810000; c) 64.
Chúc bạn học tốt!!!