Tính :\(\left(16^3-64^2\right):8^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 44: (SBT/12):
a. (7.35 - 34 + 36) : 34
= (7.35 : 34) + (-34 : 34) + (36 : 34)
= 7 . 3 - 1 + 32
= 21 - 1 + 9
= 29
b. (163 - 642) : 83
= [(2.8)3 - (82)2 ] : 83
= (23 . 83 - 84) : 83
= ( 23 . 83 : 83) + (-84 : 83)
= 23 - 8
= 8 - 8
= 0
a) \(\left(7.3^5-3^4+3^6\right):3^4\)
\(=7.3^5:3^4-3^4:3^4+3^6:3^4\)
\(=7.3^{5-4}-3^{4-4}+3^{6-4}\)
\(=7.3^1-3^0+3^2\)
\(=7.3-1+9\)
\(=21-1+9\)
\(=20+9\)
\(=29\)
b) \(\left(16^3-64^2\right):8^3\)
\(=\left[\left(2^4\right)^3-\left(2^6\right)^2\right]:\left(2^3\right)^3\)
\(=\left(2^{4.3}-2^{6.3}\right):2^{3.3}\)
\(=\left(2^{12}-2^{12}\right):2^9\)
\(=2^{12-9}-2^{12-9}\)
\(=2^3-2^3\)
\(=8-8\)
\(=0\)
3: =(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1
4:
D=(4^4-1)(4^4+1)(4^8+1)*....*(4^64+1)
=(4^8-1)(4^8+1)*...*(4^64+1)
=...
=4^128-1
5: =(5^2-1)(5^2+1)(5^4+1)*...*(5^128+1)+(5^256-1)
=(5^4-1)(5^4+1)*...*(5^128+1)+5^256-1
=5^256-1+5^256-1
=2*5^256-2
\(\sqrt{64}+3.\sqrt{\left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2:\frac{1}{2}}\right).8\)
= \(8+3.1-\frac{4}{4}+\left(\sqrt{16:\frac{1}{2}}\right).8\)
=\(8+3-1+\left(\sqrt{16.2}\right).8\)
=\(8+3-1+\left(\sqrt{32}\right).8\)
=\(11-1+\left(\sqrt{32}\right).8\)
= \(10+5,65685424949.8\)
= \(10+45,2548339959\)
=\(55,2548339959\)
Mình ko biết là có đúng không í
vì mình thấy đề bài có gì sai ý!!!
\(\sqrt{64}+3\sqrt{\left(\frac{1}{2}\right)^0}-\frac{\sqrt{16}}{4}+\left(\sqrt{\left(-4\right)^2}:\frac{1}{2}\right).8\)
\(=\sqrt{8^2}+3\sqrt{1}-\frac{\sqrt{4^2}}{4}+\left(\sqrt{16}:\frac{1}{2}\right).8\)
\(=8+3-\frac{4}{4}+\left(\sqrt{4^2}:\frac{1}{2}\right).8\)
\(=11-1+\left(4.2\right).8\)
\(=10+8.8=10+64=74\)
Phải là (2+1)(2²+1)(2⁴+1)...(2³²+1)- 2^64
(2+1)(2²+1)(2⁴+1)...(2³²+1)
=(2-1)(2+1)(2²+1)(2⁴+1)...(2³²+1)
=(2²-1)(2²+1)(2⁴+1)...(2³²+1)
=(2⁴-1)(2⁴+1)...(2³²+1)=…=2^64-1
Vậy C=-1
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
ta thấy : 163-642=0
do đó kết quả cũng sẽ =0
\(\dfrac{16^3-64^2}{8^3}=\dfrac{\left(2^4\right)^3-\left(2^6\right)^2}{\left(2^3\right)^3}=\dfrac{2^{12}-2^{12}}{2^9}=\dfrac{0}{2^9}=0\)