Giải hộ giúp tôi bài
3.5 / câu h và g
3.6/ câu c, d,h và k
Mọi người giúp e với ạ !
Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: Ta có: ΔBAD=ΔBHD
nên DA=DH
mà DH<DC
nên DA<DC
a, Xét tam giác ABD và tam giác HBD
^ABH = ^HBD (gt)
BD _ chung
Vậy tam giác ABD = tam giác HBD (ch-gn)
=> BA = BH ( 2 cạnh tương ứng )
b, Lại có AD = DH ( 2 cạnh tương ứng )
Xét tam giác DHC vuông tại H
có DC > DH ( cạnh huyền > cạnh góc vuông )
=> AD < DC
3. She said I should ask a lawyer.
4. Mrs Linh asked me to give Tuan this book.
\(b,B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\left(x\ge0;x\ne4;x\ne9\right)\\ B=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)
\(c,B< A\Leftrightarrow\dfrac{\sqrt{x}-4}{\sqrt{x}-2}< \dfrac{\sqrt{x}+1}{\sqrt{x}-2}\Leftrightarrow\dfrac{\sqrt{x}-4}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 0\\ \Leftrightarrow\dfrac{-5}{\sqrt{x}-2}< 0\Leftrightarrow\sqrt{x}-2>0\left(-5< 0\right)\\ \Leftrightarrow x>4\\ d,P=\dfrac{B}{A}=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\sqrt{x}-4}{\sqrt{x}+1}=1-\dfrac{5}{\sqrt{x}+1}\in Z\\ \Leftrightarrow5⋮\sqrt{x}+1\Leftrightarrow\sqrt{x}+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{-6;-2;0;4\right\}\\ \Leftrightarrow x\in\left\{0;16\right\}\left(\sqrt{x}\ge0\right)\)
\(e,P=1-\dfrac{5}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}+1\ge1,\forall x\Leftrightarrow\dfrac{5}{\sqrt{x}+1}\ge5\Leftrightarrow1-\dfrac{5}{\sqrt{x}+1}\le-4\)
\(P_{max}=-4\Leftrightarrow x=0\)
a: Ta có: \(\sqrt{75}-\sqrt{5\dfrac{1}{3}}+\dfrac{9}{2}\sqrt{2\dfrac{2}{3}}+2\sqrt{27}\)
\(=5\sqrt{3}+\dfrac{4}{3}\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)
\(=\dfrac{37}{3}\sqrt{3}+3\sqrt{6}\)
c: Ta có: \(\left(\sqrt{12}+2\sqrt{27}\right)\cdot\dfrac{\sqrt{3}}{2}-\sqrt{150}\)
\(=\left(2\sqrt{3}+6\sqrt{3}\right)\cdot\dfrac{\sqrt{3}}{2}-5\sqrt{6}\)
\(=12-5\sqrt{6}\)
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
3.5 h)
\(\int x\ln \left (\frac{x+1}{1-x}\right)dx=\int x(\ln(x+1)-\ln (1-x))dx=\int x\ln (x+1)dx-\int x\ln (1-x)dx\)
Xét \(\int x\ln (x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dx}{x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)
\(\Rightarrow \int x\ln (x+1)dx=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\int \frac{x^2}{x+1}dx\)
\(=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\int \left(x-1+\frac{1}{x+1}\right)dx\)
\(=\frac{x^2\ln (x+1)}{2}-\frac{1}{2}\left(\frac{x^2}{2}-x+\ln |x+1|\right)+c\)
Tương tự, \(\int x\ln (1-x)dx=\frac{x^2\ln (1-x)}{2}-\frac{1}{2}\left (\frac{x^2}{2}+x+\ln |1-x|\right)+c\)
Do đó \(\int x\ln\left (\frac{x+1}{1-x}\right)dx=\frac{x^2\ln \left (\frac{x+1}{1-x}\right)}{2}+x-\frac{1}{2}\ln \left (\frac{x+1}{1-x}\right)+c\)
3.5 g)
Đặt \(\left\{\begin{matrix} u=\ln^2x\\ dv=\sqrt{x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2\ln x}{x}\\ v=\frac{2\sqrt{x^3}}{3}\end{matrix}\right.\)
\(\Rightarrow \int \sqrt{x}\ln ^2xdx=\frac{2\sqrt{x^3}\ln ^2x}{3}-\frac{4}{3}\int \sqrt{x}\ln xdx\)
Xét \(\int \sqrt{x}\ln xdx\)
Đặt \(\left\{\begin{matrix} m=\ln x\\ dn=\sqrt{x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dm=\frac{dx}{x}\\ n=\frac{2\sqrt{x^3}}{3}\end{matrix}\right.\)
\(\Rightarrow \int \sqrt{x}\ln xdx=\frac{2\ln x.\sqrt{x^3}}{3}-\frac{2}{3}\int \sqrt{x}dx\)
\(=\frac{2\ln x.\sqrt{x^3}}{3}-\frac{4\sqrt{x^3}}{9}+c\)
Do đó \(\int \sqrt{x}\ln^2xdx=\frac{2\ln ^2x.\sqrt{x^3}}{3}-\frac{8\ln x.\sqrt{x^3}}{9}+\frac{16\sqrt{x^3}}{27}+c\)