K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Vì x>2 áp dụng BĐT Cauchy cho 2 số dương

\(y=x+\dfrac{2x+5}{x-2}=x+\dfrac{2x-4+9}{x-2}=x+2+\dfrac{9}{x-2}\)

\(=6+\left(x-2+\dfrac{9}{x-2}\right)\ge6+2\sqrt{x-2.\dfrac{9}{x-2}}=6+2\sqrt{9}=10\)

Đẳng thức xảy ra \(\Leftrightarrow x-2=\dfrac{9}{x-2}\Leftrightarrow x=5\)

4 tháng 8 2021

còn cách làm khác không ạ?

 

3 tháng 5 2023

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4

13 tháng 8 2021

đề có thiếu không vậy?

13 tháng 8 2021

không ạ.

 

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

25 tháng 8 2021

bn ơi P-14 ở đâu ra vậy