Bài 1: Cho 5 số tự nhiên a, b, c, d, e. Biết ab = bc = cd = de = ea. Chứng minh 5 số đó bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
ab = bc
\(\Rightarrow\) a = c (1)
bc = cd
\(\Rightarrow\) b = d (2)
cd = de
\(\Rightarrow\) c = e (3)
de = ea
\(\Rightarrow\) d = a (4)
ea = ab
\(\Rightarrow\) e = b (5)
Từ (1), (2), (3), (4), (5) \(\Rightarrow\) a = b = c = d = e
\(\Rightarrow\) ĐPCM
Giả sử a\(\ne\)b, chẳng hạn a<b(trường hợp a>b Chứng minh tương tự). Chú ý rằng nếu hai lũy thừa bằng nhau có cơ số ( là số tự nhiên) khác nhau thì lũy thừa nào có cơ số nhỏ hơn thì sẽ có số mũ lớn hơn. Từ \(a^b=b^c=c^d=d^e=e^a\)và a<b suy ra b>c, c<d,d>e,e<a,a>b, mâu thuẫn. Do đó: a=b
Vậy a,b,c,d,e bằng nhau.
Bạn '' Vũ Ngọc Anh'' nói đúng đó . đề bài sai thì phải !!
Bn tự vẽ hình nhá!!
a) Xét tam giác EAM và tam giác CBM có:
MA = MB (gt)
góc EMA = góc BMC ( 2 góc đối đỉnh)
ME = MC (gt)
=> tam giác EAM = tam giác CBM (c-g-c)
=> EA = BC (2 cạnh tương ứng)
góc EAM = góc CBM (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> EA II BC
b) Xét tam giác ADN và tam giác CBN có:
NB = ND (gt)
góc AND = góc BNC (2 góc đối đỉnh)
NA = NC (gt)
=> tam giác ADN = tam giác CBN (c-g-c)
=> DA = BC (2 cạnh tương ứng)
góc ADN = tam giác CBN (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong => DA II BC
c) Ta có: EA = BC (theo a)
DA = BC (theo b)
=> EA = DA => A là trung điểm của DE
Giả sử \(2\) trong \(5\) số tự nhiên đó không bằng nhau. \(a < b (1 )\)
Trong \(2\) lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại.
Vì \(a^b=b^c\) mà \(a < b \)
\(\Rightarrow c< b\)
Vì \(b^c=c^d\) mà \(c< b\)
\(\Rightarrow c< d\)
Vì \(c^d=d^e\) mà \(c< d\)
\(\Rightarrow e< d\)
Vì \(d^e=e^a\) mà \(e< d\)
\(\Rightarrow a< e\)
Vì \(e^a=a^b\) mà \(a< e\)
\(\Rightarrow a>b\) \(( 2 ) \)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: Điều giả sử sai.
Vậy \(a=b=c=d=e\left(đpcm\right)\) .