tìm x,y biết: x:3=y:5 và xy=135
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$2x(x+3)+(2x+3)(5-x)=2$
$\Leftrightarrow 2x^2+6x+(10x-2x^2+15-3x)=2$
$\Leftrightarrow 2x^2+6x+7x-2x^2+15=2$
$\Leftrightarrow 13x+15=2$
$\Leftrightarrow 13x=2-15=-13$
$\Leftrightarrow x=-13:13=-1$
Bài 2:
$x-y=4\Rightarrow x=y+4$. Thay vào $xy=5$ thì:
$(y+4)y=5$
$\Leftrightarrow y^2+4y-5=0$
$\Leftrightarrow (y-1)(y+5)=0$
$\Leftrightarrow y=1$ hoặc $y=-5$
Nếu $y=1$ thì $x=y+4=5$. Khi đó $x^3+y^3=5^3+1^3=126$
Nếu $y=-5$ thì $x=y+4=-1$. Khi đó: $x^3+y^3=(-1)^3+(-5)^3=-126$
271-[(-43)+271+(-13)] = 56
40.(45-135)-40.(45+65)=-8000
32x+41=35-(-70) => x=2
tìm x thuộc z,y thuộc z biết:(x-1)(xy-5)=5 Chịu
Đặt: \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow x=3k\)
\(y=5k\)
\(xy=3k.5k=15k^2=135\Rightarrow k=9\Rightarrow k=\sqrt[2]{9}=3\)
Vậy: \(x=3.3=9\)
\(y=3.5=15\)
a, THeo đề bài ta có :
\(\frac{x}{3}=\frac{y}{5}\)\(\Rightarrow\frac{3x}{9}=\frac{2y}{10}\)mà \(3x-2y=10\)
Áp dụng t/c DTSBN, ta đc :
\(\frac{3x}{9}=\frac{2y}{10}\Leftrightarrow\)\(\frac{3x-2y}{9-10}=\frac{10}{-1}=-10\)
\(3x=-10.9=-90\Rightarrow x=-90:3=-30\)
\(2y=-10.10=-100\Rightarrow y=-100:2=-50\)
Vậy \(x=-30\)
\(y=-50\)
b, Gọi x và y là k \(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
Ta có : \(3k.5k=135\)
\(15k^2=135\)
\(k^2=135:15\)
\(k^2=9\)
\(\Rightarrow k=\pm3\)
\(\Leftrightarrow x=\hept{\begin{cases}3.3\\-3.3\end{cases}}\Rightarrow\hept{\begin{cases}x=9\\x=-9\end{cases}}\)
\(y=\hept{\begin{cases}3.5\\-3.5\end{cases}}\Rightarrow\hept{\begin{cases}y=15\\y=-15\end{cases}}\)
Vậy \(x=\pm9\)
\(y=\pm15\)
( don't k ...#EXOComingSoon... )
aTHEO TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{3}=\frac{y}{5}=\frac{3x}{9}=\frac{2y}{10}=\frac{3x-2y}{9-10}=-10\)
\(\Rightarrow x=-30,y=-50\)
b, ĐẶT \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow x=3k,y=5k\)
\(\Rightarrow3k\cdot5k=135\)
\(\Rightarrow15k^2=135\)
\(\Rightarrow K^2=9\)
\(\Rightarrow k=3,k=-3\)
hok tốt
#huybip#
đặt x/3=y/5=k(k khác 0) =>x=3k; y=5k
=> x.y=3k .5k=15.k^2=135
=k^2=135:15=9=3^2 hoặc (-3)^2
th1:k=3=> x=9;y=15
th2:k=-3=>x=-9;y=-15
#)Giải :
Đặt \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
\(\Rightarrow xy=3k.5k=135\)
\(\Rightarrow15k^2=135\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\hept{\begin{cases}x=3.3=9\\y=3.5=15\end{cases}}\)
\(\hept{\begin{cases}x=-3.3=-9\\y=-3.5=-15\end{cases}}\)
Vậy x có hai bộ số (x,y) là (9,15) ; (-9,-15)
d: x+y=5
nên x=5-y
Ta có: xy=6
=>y(5-y)=6
=>y2-5y+6=0
=>(y-2)(y-3)=0
=>y=2 hoặc y=3
=>x=3 hoặc x=2
a: \(\Leftrightarrow\left(x-3;y+4\right)\in\left\{\left(1;-7\right);\left(-1;7\right);\left(-7;1\right);\left(7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;-11\right);\left(2;3\right);\left(-4;-3\right);\left(10;-5\right)\right\}\)
Đặt:
\(\dfrac{x}{3}=\dfrac{y}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
\(\Rightarrow xy=3k.5k=135\)
\(\Rightarrow15k^2=135\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3.3=9\\y=3.5=15\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3.3=-9\\y=-3.5=-15\end{matrix}\right.\end{matrix}\right.\)
Vậy....
Ta có : \(\dfrac{x}{3}=\dfrac{y}{5}\) và xy = 135
\(\Rightarrow\dfrac{x}{3}.y=\dfrac{y}{5}.y\Leftrightarrow\dfrac{xy}{3}=\dfrac{y^2}{5}\)
\(\Rightarrow\dfrac{135}{3}=\dfrac{y^2}{5}\Rightarrow y^2=\dfrac{135}{3}.5=225=\left(\pm15\right)^2\)* Nếu y = 15 \(\Rightarrow\dfrac{x}{3}=\dfrac{15}{5}\Rightarrow x=9\)
* Nếu y = -15 \(\Rightarrow\dfrac{x}{3}=\dfrac{-15}{5}\Rightarrow x=-9\)
Vậy có 2 bộ số (x,y) là (-9,-15);(9,15)
tik mik nha