Tìm một số tự nhiên a nhỏ nhất sao cho: a chia hết cho 5 thì dư 3 chia hết cho 7 thì dư 4.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a chia 5 dư 3 nên a có dạng 5k + 3
Vì 5k + 3 chia 7 dư 4 nên (5k +3) - 4 chia hết cho 7
=> 5k - 1 chia hết cho 7
Số k nhỏ nhất thoả mãn là 3. Như vậy số cần tìn là 5.3 + 3 = 18
a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư
Gọi số đó là x
Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}
=> x ∈ {1; 61; 121; 181; 241; 301 ...}
Vì x chia hết cho 7 => x = 301
b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9
Ta có: a chia 2 dư 1
a chia 5 dư 1
a chia 7 dư 3
a chia hết cho 9
=> a chia hết cho 3; 6; 9; 10
Ta có: 2 + 1 = 3
6 + 1 = 6
7 + 3 = 10
=> a nhỏ nhất
=> a thuộc BCNN(3; 6; 9; 10)
Ta có: 3 = 3
6 = 2 . 3
9 = 3^2
10 = 2 . 5
=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90
=> a = 90
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Gọi số tự nhiên đó là \(n\).
Vì \(n\)chia cho \(6\)dư \(5\)và chia hết cho \(3\)mà
ta có \(6⋮3\)nên số dư của số đó cho \(3\)là số dư của \(5\)cho \(3\)là \(2\)(mâu thuẫn).
Vậy không tồn tại số tự nhiên thỏa mãn ycbt.
Gọi số đó là x.
Ta có: x + 2 chia hết cho 3; 4; 5; 6
=> x + 2 là BC(3, 4, 5, 6)
Vì BCNN(3, 4, 5, 6) = 60 => x + 2 = 60 . q (q \(\in\) N)
Do đó x = 60 . q - 2
Mặt khác x chia hết cho 11. => chọn q = 1; 2; 3; 4; ...
Ta thấy q = 7 thì x = 60 x 7 - 2 = 418 chia hết cho 11
Vậy số cần tìm là 418
@@
Ta có : a : 5 dư 3 \(\Rightarrow\left(a-3\right)⋮5\Rightarrow\left(2a-6\right)⋮5\)
a : 7 dư 4 \(\Rightarrow\left(a-4\right)⋮7\) \(\Rightarrow\left(2a-8\right)⋮7\)
\(\Rightarrow\left(2a-1\right)⋮5;7\)
Mà a là số tự nhiên nhỏ nhất nên 2a-1 =BCNN(5;7)=35
\(\Rightarrow2a-1=35\)
\(\Rightarrow2a=36\Rightarrow a=18\)
Vậy số tự nhiên a nhỏ nhất cần tìm là 18