cho B = \sqrt{x+2017}+2018
a, tìm x để B có nghĩa
b, tìm GTNN của B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left\{{}\begin{matrix}5x+3>=0\\x>=0\end{matrix}\right.\Leftrightarrow x>=0\)
b: Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot4=2\)
Vậy: D(-2;2)
a/ ĐKXĐ : \(0\le x\ne4\)
\(B=\frac{x\sqrt{x}+15\sqrt{x}-35}{x-\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\frac{x\sqrt{x}+15\sqrt{x}-35-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x\sqrt{x}+15\sqrt{x}-35-x+4-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x\sqrt{x}-2x+15\sqrt{x}-30}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(x+15\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\frac{x+15}{\sqrt{x}+1}\)
c/ \(x=21-4\sqrt{5}=\left(2\sqrt{5}-1\right)^2\) thay vào B được
\(B=\frac{21-4\sqrt{5}+15}{2\sqrt{5}-1+1}=\frac{36-4\sqrt{5}}{2\sqrt{5}}=\frac{-10+18\sqrt{5}}{5}\)
d/ Đặt \(t=\sqrt{x},t\ge0\) thì \(B=\frac{t^2+15}{t+1}=6\Leftrightarrow t^2+15=6\left(t+1\right)\Leftrightarrow t^2-6t+9=0\Leftrightarrow t=3\)
=> x = 9
e/ \(B=\frac{t^2+15}{t+1}=\frac{6\left(t+1\right)+\left(t^2-6t+9\right)}{t+1}=\frac{\left(t-3\right)^2}{t+1}+6\ge6\)
Đẳng thức xảy ra khi t = 3 <=> x = 9
Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9
a/ ĐKXĐ : 0≤x≠4
B=x√x+15√x−35x−√x−2 −√x+2√x+1 −√x−1√x−2
=x√x+15√x−35−(√x+2)(√x−2)−(√x+1)(√x−1)(√x+1)(√x−2)
=x√x+15√x−35−x+4−x+1(√x+1)(√x−2)
=x√x−2x+15√x−30(√x+1)(√x−2) =(√x−2)(x+15)(√x+1)(√x−2) =x+15√x+1
c/ x=21−4√5=(2√5−1)2 thay vào B được
B=21−4√5+152√5−1+1 =36−4√52√5 =−10+18√55
d/ Đặt t=√x,t≥0 thì B=t2+15t+1 =6⇔t2+15=6(t+1)⇔t2−6t+9=0⇔t=3
=> x = 9
e/ B=t2+15t+1 =6(t+1)+(t2−6t+9)t+1 =(t−3)2t+1 +6≥6
Đẳng thức xảy ra khi t = 3 <=> x = 9
Vậy B đạt giá trị nhỏ nhất bằng 6 khi x = 9
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.
Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.
Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.
a: B(căn x+3)=10 căn x
=>x+16-10 căn x=0
=>(căn x-2)(căn x-8)=0
=>x=4 hoặc x=64
b: \(B=\dfrac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\)
=>\(B=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6>=2\cdot\sqrt{25}-6=2\cdot5-6=4\)
Dấu = xảy ra khi (căn x+3)^2=25
=>căn x+3=5
=>căn x=2
=>x=4
\(B=\sqrt{x+2017}+2018\)
a) Đề biểu thức trên có nghĩa thì:
\(x+2017\ge0\Rightarrow x\ge-2017\)
b) Với mọi \(x\ge-2017\) ta có:
\(\sqrt{x+2017}\ge0\)
\(\Rightarrow\sqrt{x+2017}+2018\ge2018\)
Dấu "=" xảy ra khi:
\(\sqrt{x+2017}=0\Rightarrow x=-2017\)
\(\Rightarrow MIN_B=2018\) khi \(x=-2017\)