K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

b)Ta có: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c\left(1\right)\)

\(\Leftrightarrow\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^4+b^4+c^4}{abc}\ge a+b+c\)

\(\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta xét BĐT phụ: \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

Cộng các BĐT phụ vừa chứng minh:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Áp dụng vào bài, ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng lần nữa:

\(a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bc^2a+a^2bc=abc\left(a+b+c\right)\)

Vậy ta suy ra được điều phải chứng minh

2 tháng 8 2017

a) Đặt vế trái BĐT là P

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)\left(1+c\right)}{\left(1+b\right)\left(1+c\right)8.8}}=\dfrac{3a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{1+a}{8}+\dfrac{1+c}{8}\ge\dfrac{3b}{4}\)

\(\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}+\dfrac{1+a}{8}+\dfrac{1+b}{8}\ge\dfrac{3c}{4}\)

Cộng vế theo vế các BĐT vừa chứng minh

\(P+\dfrac{6+2a+2b+2c}{8}\ge\dfrac{3a+3b+3c}{4}\)

\(P\ge\dfrac{3a+3b+3c}{4}-\dfrac{2\left(3+a+b+c\right)}{8}=\dfrac{3a+3b+3c-a-b-c-3}{4}=\dfrac{2\left(a+b+c\right)-3}{4}\)

\(a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow P\ge\dfrac{2.3-3}{4}=\dfrac{3}{4}\)

NV
18 tháng 9 2021

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

19 tháng 12 2021

Áp dụng BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(\text{luôn đúng}\right)\)

Ta có \(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}\ge3\sqrt[3]{\dfrac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

\(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\ge3\sqrt[3]{\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Cộng VTV \(\Leftrightarrow3\ge\dfrac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\sqrt[3]{abc}+1\)

\(\Leftrightarrow VT^2=\sum\left[\dfrac{1}{a\left(b+1\right)}\right]^2\ge3\cdot\sum\dfrac{1}{ab\left(a+1\right)\left(b+1\right)}\\ \Leftrightarrow VT^2\ge3\cdot\dfrac{a^2+b^2+c^2+a+b+c}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge3\cdot\dfrac{a+b+c+ab+bc+ca}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\\ \Leftrightarrow VT^2\ge\dfrac{3}{abc}-\dfrac{3\left(abc+1\right)}{abc\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{3}{abc}-\dfrac{3\left(abc+1\right)}{abc\left(1+\sqrt[3]{abc}\right)^3}\\ \Leftrightarrow VT^2\ge\dfrac{9}{\sqrt[3]{\left(abc\right)^2}\left(1+\sqrt[3]{abc}\right)^2}=VP^2\\ \LeftrightarrowĐpcm\)

Dấu \("="\Leftrightarrow a=b=c=1\)

14 tháng 3 2022

chết đăng nhầm sogy nha

3: \(\left\{{}\begin{matrix}a+b>=2\sqrt{ab}\\b+c>=2\sqrt{bc}\\a+c>=2\sqrt{ac}\end{matrix}\right.\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)>=8abc\)

1: =>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

=>(a+b)(a^2-2ab+b^2)>=0

=>(a+b)(a-b)^2>=0(luôn đúng)

11 tháng 4 2023

kh có ý 2 à cậu?

13 tháng 2 2019

Áp dụng BĐT AM - GM ta có:

$ \frac{a^3}{(1 + b)(1 + c)} + \frac{1 + b}{8} + \frac{1 + c}{8} \geq \frac{3}{4}a$

$\frac{b^3}{(1 + c)(1 + a)} + \frac{1 + c}{8} + \frac{1 + a}{8} \geq \frac{3}{4}b$

$\frac{c^3}{(1 + a)(1 + b)} + \frac{1 + a}{8} + \frac{1 + b}{8} \geq \frac{3}{4}c $

Cộng vế theo vế ta được:

$ P + \frac{2(a + b + c) + 6}{8} \geq \frac{3}{4}(a + b + c) $

$<=> P \geq \frac{1}{2}(a + b + c) - \frac{3}{4}$

$=> P \geq \frac{3}{4} (dpcm)$

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
6 tháng 8 2021

a) \(A=\dfrac{2}{3}+\dfrac{3}{4}.\left(\dfrac{-4}{9}\right)=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)

b) \(B=2\dfrac{3}{11}.1\dfrac{1}{12}.\left(-2,2\right)=\dfrac{25}{11}.\dfrac{13}{12}.\dfrac{-11}{5}=-\dfrac{65}{12}\)

c) \(C=\left(\dfrac{3}{4}-0,2\right)\left(0,4-\dfrac{4}{5}\right)=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\left(\dfrac{-2}{5}\right)=\dfrac{-11}{50}\)

6 tháng 8 2021

A = 2/3 + -1/3

    = 1/3

B = 25/11 . 13/12 . (-2,2)

    = 325/132 . (-2,2)

    = -65/12

C = 11/20 . -2/5

    = -11/50

Chúc bạn học tốt!! ^^

    = -

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

Ta có:

\(\text{VT}=\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\)

\(=\frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}=\frac{ab+bc+ac+a+b+c}{abc+(ab+bc+ac)+(a+b+c)+1}\)

\(=\frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\)

Ta cần chứng minh \(\text{VT}\geq \frac{3}{4}\)

\(\Leftrightarrow \frac{ab+bc+ac+a+b+c}{2+(a+b+c)+ab+bc+ac}\geq \frac{3}{4}\)

\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3(ab+bc+ac+a+b+c)+6\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 6\sqrt[6]{ab.bc.ac.a.b.c}\)

(Đúng theo BĐT Cô-si)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)

14 tháng 5 2018

em cảm ơn nhiều nha