Bài 1: Tìm số tự nhiên n sao cho:
a) 2n + 1 \(⋮\) 6 - n
Ai nhanh mk sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n - 5 \(⋮\)2n - 4
=> 4n - 8 + 3 \(⋮\)2n - 4
=> 2 . ( 2n - 4 ) + 3 \(⋮\)2n - 4 mà 2 . ( 2n - 4 ) \(⋮\)2n - 4 => 3 \(⋮\)2n - 4
=> 2n - 4 thuộc Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
Lập bảng tính n ( phần này dễ bạn tự làm nha )
N.(N + 1) = 12
N2 + N = 12
N2 + N - 12 = 0
(N - 3)(N - 4) = 0
N - 3 = 0 hoặc N - 4 = 0
N = 3 hoặc N = 4
\(N.\left(N+1\right)=12\)
\(N^2+N=12\)
\(N^2+N-12=0\)
\(N^2+4N-3N-12=0\)
\(N\left(N+4\right)-3\left(N+4\right)=0\)
\(\left(N+4\right)\left(N-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}N+4=0\\N-3=0\end{cases}\Rightarrow\orbr{\begin{cases}N=-4\\N=3\end{cases}}}\)
VẬY N=-4 ; N=3
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Ta có 2n+111...1(n chữ số 1) = 3n+(111...1-n) (n chữ số 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n (n chữ số 1) \(⋮\)3
mà 3n\(⋮\)3 => 2n+111...1(n chữ số 1) \(⋮\)3 (đpcm)
Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)
cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng
\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
phân tích 10^2n = (10^n)^2
10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được
\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)
=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{3^2}\)
=\(\left(\frac{10^n+8}{3}\right)^2\)
vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương
\(a,\left(n+3\right)⋮\left(n+1\right)\)
\(n+3⋮n+1\)
\(n+1+2⋮n+1\)
Vì \(n+1⋮n+1\)
\(2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\left\{\pm1;\pm2\right\}\)
Ta lập bảng xét giá trị
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
a) Ta có : n+3\(⋮\)n+1
\(\Rightarrow\)n+1+2\(⋮\)n+1
Vì n+1\(⋮\)n+1 nên 2\(⋮\)n+1
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
...
b) Ta có : 2n+6\(⋮\)2n-6
\(\Rightarrow\)2n-6+12\(⋮\)2n-6
Vì 2n-6\(⋮\)2n-6 nên 12\(⋮\)2n-6
\(\Rightarrow2n-6\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
c) Ta có : 2n+3\(⋮\)n-2
\(\Rightarrow\)2n-4+7\(⋮\)n-2
\(\Rightarrow\)2(n-2)+7\(⋮\)n-2
Vì 2(n-2)\(⋮\)n-2 nên 7\(⋮\)n-2
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
...
d) Tương tự phần c.
Ta có \(\dfrac{2n+1}{6-n}=\dfrac{2n-12+13}{6-n}=\dfrac{2\left(n-6\right)+13}{6-n}\)
\(=-2+\dfrac{13}{6-n}\)
để \(2n+1⋮6-n\Rightarrow\dfrac{2n+1}{6-n}\in N\)
hay \(6-n\inƯ\left(13\right)\)
nên \(6-n\in\left(1;13\right)\)
ta có bảng
vậy giá trị n thỏa mãn là 5 ( mik chưa xét đên nghiệm âm ) .
tik mik nhé