K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Ta có :

\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)

\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

tương tự với hai ông còn lại sau đó cộng lại ta được:

\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

18 tháng 12 2021

Áp dụng BĐT Cauchy-Schwarz:

\(\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge\dfrac{16}{3x+3y+2z}\\ \Leftrightarrow\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)\\ \Leftrightarrow\sum\dfrac{1}{3x+2y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x+y}+\dfrac{4}{y+z}+\dfrac{4}{z+x}\right)=\dfrac{4}{16}\cdot6=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

16 tháng 12 2020

cứuuuuuuuuuuuubucminh

1 tháng 2 2023

a,Áp sụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2z}{9-14}=\dfrac{15}{-5}=-3\\\Rightarrow x=-3.3=-9\\ \Rightarrow y=-3.5=-15\\ \Rightarrow z=-3.7=-21 \)

 

a) Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x}{9}=\dfrac{2z}{14}=\dfrac{3x-2z}{9-14}=\dfrac{15}{-5}=-3\)  (Vì 3x-2z=15)


\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-3\\\dfrac{y}{5}=-3\\\dfrac{z}{7}=-3\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-21\end{matrix}\right.\)

Vậy ...
 

b) Ta có: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x}{10}=\dfrac{3y}{9}=\dfrac{2x-3y}{10-9}=\dfrac{100}{1}=100\) (Vì 2x-3y=100)


\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=100\\\dfrac{y}{3}=100\\\dfrac{z}{2}=100\end{matrix}\right.\)    \(\Rightarrow\left\{{}\begin{matrix}x=500\\y=300\\z=200\end{matrix}\right.\)

Vậy ...

c) Ta có: \(\dfrac{x}{-3}=\dfrac{y}{-5}=\dfrac{z}{-4}=\dfrac{3z}{-12}=\dfrac{2x}{-6}=\dfrac{3z-2x}{\left(-12\right)-\left(-6\right)}=\dfrac{36}{-18}=-2\)                                                         (Vì 3z-2x=36)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-3}=-2\\\dfrac{y}{-5}=-2\\\dfrac{z}{-4}=-2\end{matrix}\right.\)     \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=10\\z=8\end{matrix}\right.\)

Vậy ... 

28 tháng 4 2017

Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)

Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)

Quay lại bài toán, sau khi đặt bài toán trở thành:

\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)

\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)

28 tháng 4 2017

Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??

16 tháng 7 2021

Cảm ơnn

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3