K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(BC\) \(\subset\)\(\left(SBC\right)\)

Tìm giao tuyến của của \(\left(OMN\right)\)và \(\left(SBC\right)\):

 \(N\)là điểm chung thứ nhất

Ta có : \(MO\)\(\subset\)\(\left(AMO\right)\)\(\equiv\)\(\left(SAH\right)\)với \(H=AO\)\(\cap\) \(BC\)

\(\left(SAH\right)\)\(\cap\) \(\left(SBC\right)\)\(SH\)

Trong \(\left(SAH\right)\)\(MO\)\(\cap\) \(SH\)\(K\)

\(K\)là điểm chung thứ 2.

Vậy \(\left(OMN\right)\)\(\cap\)\(\left(SBC\right)\)\(NK\)

Trong \(\left(SBC\right):\)\(NK\)\(\cap\)\(BC\)\(P\)

Vậy \(\left(OMN\right)\)\(\cap\) \(BC\)\(P\)

8 tháng 12 2021

Ta có N thuộc (OMN)

C thuộc đường thẳng BC 

Mà N trùng với C => N là giao điểm của (OMN) và BC

9 tháng 10 2019

Đáp án A

Gọi H là hình chiếu của S lên mặt đáy A B C suy ra S H ⊥ A B C thì H là trung điểm của AC.

Ta có:

S H = 9 − 2 = 7 ; K = P Q ∩ A B ; A B = A C = 2

Dựng  P E / / A B ta có:

K B P E = Q B Q E = 1 ⇒ K B = P E = 1 3 A B = 2 3

S M N K = 1 2 d K ; M N . M N = 1 2 N B . M N = 1 2 d P ; A B C = 2 3 . S H = 2 3 7 ⇒ V P . M N K = 1 3 d P ; A B C . S M N K = 7 9

Lại có:

K Q K P = 1 2 ⇒ V Q . M N P V K . M N P = 1 2 ⇒ V Q . M N P = 1 2 V K . M N P = 7 18  

9 tháng 1 2018

25 tháng 10 2023

A B C D M N E O K

Ta có

\(E\in MN\) mà \(MN\in\left(OMN\right)\Rightarrow E\in\left(OMN\right)\)

\(O\in\left(OMN\right)\)

\(\Rightarrow EO\in\left(OMN\right)\)

Ta có

\(E\in BD\) mà \(BD\in\left(BCD\right)\Rightarrow E\in\left(BCD\right)\)

\(O\in\left(BCD\right)\)

\(EO\in\left(BCD\right)\)

Trong (BCD) kéo dài EO cắt CD tại K

=> \(K\in\left(OMN\right);K\in CD\) => K chính là giao của CD với (OMN)

9 tháng 1 2019

Đáp án C

Ta có ∆ A B C  vuông cân tại B nên M là tâm đường tròn ngoại tiếp. S M = S B = S C ⇒ S M ⊥ ( A B C )  

F E ∩ A B = K  , kẻ F G / / B A   F H   / / S M ⇒ F H ⊥ ( A B C )  ta có: F H = 2 3 S M = 2 3 S A 2 - A M 2 = 2 3 12 2 - 8 = 4 3 34  

d t K M N = d t B N M K - d t B N K = 1 2 ( M N + B K ) . B N - 1 2 M N . B N = 1 2 . 2 . 2 = 2

∆ F G E = ∆ K A E ( C . G . C ) ⇒ F E = 1 2 F K

V F M N E V F M N K = F E F K = 1 2 ⇒ V F M N E = 1 2 V F M N K = 1 2 . 1 3 . F H . d t K M N = 1 6 . 4 3 34 . 2 = 4 34 9

 

22 tháng 11 2017

11 tháng 4 2018

Ta có

+ M thuộc SB  suy ra M  là điểm chung của (LMN) và ( SBC) .

+ I  là điểm chung của (LMN) và (SBC)

+ J  là điểm chung của (LMN) và (SBC) .

Vậy M; I; J  thẳng hàng vì cùng thuộc giao tuyến của (LMN)  và (SBC).

Chọn B.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

a) Gọi \(D = HK \cap AC\). Ta có:

\(\left. \begin{array}{l}D \in AC \subset \left( {ABC} \right)\\D \in HK\end{array} \right\} \Rightarrow M = HK \cap \left( {ABC} \right)\)

b) Gọi \(E = SI \cap BK\). Ta có:

\(\left. \begin{array}{l}E \in SI \subset \left( {SAI} \right)\\E \in BK \subset \left( {ABK} \right)\end{array} \right\} \Rightarrow E \in \left( {SAI} \right) \cap \left( {ABK} \right)\)

Mà \(A \in \left( {SAI} \right) \cap \left( {ABK} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SAI} \right)\) và \(\left( {ABK} \right)\) là đường thẳng \(AE\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}I \in \left( {SAI} \right)\\I \in BC \subset \left( {BCH} \right)\end{array} \right\} \Rightarrow I \in \left( {SAI} \right) \cap \left( {BCH} \right)\\\left. \begin{array}{l}H \in SA \subset \left( {SAI} \right)\\H \in \left( {BCH} \right)\end{array} \right\} \Rightarrow H \in \left( {SAI} \right) \cap \left( {BCH} \right)\end{array}\)

Vậy giao tuyến của hai mặt phẳng \(\left( {SAI} \right)\) và \(\left( {BCH} \right)\) là đường thẳng \(HI\).