K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Ta có :\(m^3+n^3+p^3-4=m^3+n^3+p^3-\left(m+n+p\right)+2010=\left(m^3-m\right)+\left(n^3-n\right)+\left(p^3-p\right)+2010\)Dễ thấy \(2010⋮6\)

Ta cần chứng minh \(\left(m^3-m\right)+\left(n^3-n\right)+\left(p^3-p\right)\) chia hết ho 6

Ta có :\(m^3-m=\left(m-1\right)m\left(m+1\right)\)

Vì (m-1)m(m+1) là tích của 3 số nguyên liên tiếp nên :

\(\left\{{}\begin{matrix}\left(m-1\right)m\left(m+1\right)⋮2\\\left(m-1\right)m\left(m+1\right)⋮3\end{matrix}\right.\)

mà (2;3)=1 nên (m-1)m(m+1) chia hết cho 6 hay \(\left(m^3-m\right)⋮6\)

Chứng minh tương tự ta cũng có \(\left(n^3-n\right)⋮6;\left(p^3-p\right)⋮6\)

Do đó :\(\left(m^3-m\right)+\left(n^3-n\right)+\left(p^3-p\right)+2010⋮6\)

Vậy \(m^3+n^3+p^3-4\) chia hết cho 6 với m,n,p là các số nguyên thoả mãn \(m+n+p=2014\)

3 tháng 11 2016

oho

3 tháng 11 2016

Ta thử lấy cặp số là m=1 và n=5 => 0:24 = 0 (thỏa mãn đề bài) Nhưng mà 1 làm gì chia hết cho 5

11 tháng 11 2021

\(\sqrt{3}-\dfrac{m}{n}>0\Leftrightarrow\sqrt{3}>\dfrac{m}{n}\Leftrightarrow3n^2>m^2\)

Vì \(m,n\ge1\) nên \(3n^2\ge m^2+1\)

Với \(3n^2=m^2+1\Leftrightarrow m^2+1⋮3\Leftrightarrow m^2\) chia 3 dư 2 (vô lí)

\(\Leftrightarrow3n^2\ge m^2+2\)

Lại có \(4m^2>1\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2=m^2+1+\dfrac{1}{4m^2}< m^2+2\)

\(\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2< 3n^2\Leftrightarrow m+\dfrac{1}{2m}< n\sqrt{3}\\ \Leftrightarrow n\sqrt{3}-m>\dfrac{1}{2m}\)

25 tháng 2 2017

ĐỀ SAI NHÉ,PHẢI LÀ (M,N)=1 THÔI

Dễ dàng CM được tính chất sau: 1 số chính phương chia hết cho số nguyên tố p thì chia hết cho \(p^2\)

Quay lại với  bài này: 

Đặt: \(\hept{\begin{cases}m=p_1.p_2...p_i\\n=q_1.q_2...q_j\end{cases}},p_k,q_l\)là các số nguyên tố và do (m,n)=1 => \(p_k\)bất kỳ khác \(q_l\)

Áp dụng trực tiếp tính chất trên ta => m,n là số chính phương

AH
Akai Haruma
Giáo viên
19 tháng 4 2021

Lời giải:

Vì $m,n$ nguyên tố cùng nhau, $m+n=90$ chẵn nên $m,n$ là hai số lẻ phân biệt.

Không mất tổng quát giả sử $m>n$.

$90=m+n>2n\Rightarrow n< 45$. Vì $n$ lẻ nên $n\leq 43$.

Có:

$mn=(90-n)n=90n-n^2=n(43-n)-47(43-n)+43.47$

$=(n-47)(43-n)+2021$

Vì $n\leq 43$ nên $n-47< 0; 43-n\geq 0\Rightarrow (n-47)(43-n)\leq 0$

$\Rightarrow mn\leq 2021$. Giá trị này đạt tại $n=43, m=47$ thỏa mãn điều kiện đề.

Vậy GTLN của $mn$ là $2021$.

12 tháng 6 2016

Đặt A là thương của n+3 và 2n-1. Vì n+3 chia hết cho 2n-1 nên A nguyên.

\(A=\frac{n+3}{2n-1}\)A nguyên => 2A cũng nguyên, ta có: \(2A=\frac{2n+6}{2n-1}=\frac{2n-1+7}{2n-1}=1+\frac{7}{2n-1}\)

Để 2A nguyên thì 2n-1 là ước của 7. Mà ước của 7 là -7;-1;1;7 nên:

  • Nếu 2n-1 = -7 => n=-3
  • Nếu 2n-1 = -1 => n=0
  • Nếu 2n-1 = 1 => n=1
  • Nếu 2n-1 = 7 => n=4.

Vậy chỉ có 4 giá trị nguyên của n là n= -3;0;1;4 thì n+3 chia hết cho 2n-1.

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP