Bài tập:
1.Phân tích a4+4 thành nhân tử
2.Áp dụng tính A=24+4/44+4 . 64+4/84+4 . 104+4/124+4 . 144+4/164+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này chưa học bt làm mấy câu
b. x^2 + 2x - 3
= x^2 + 3x - x - 3
= x ( x - 1 ) + 3 ( x - 1 )
= ( x + 3 ) ( x - 1 )
\(4x^2-3x-4\)
\(=\left(2x\right)^2-2.2x.\frac{3}{4}+\frac{9}{16}-\frac{73}{16}\)
\(=\left(2x-\frac{3}{4}\right)^2-\frac{73}{16}\)
\(=\left(2x-\frac{3}{4}\right)^2-\left(\frac{\sqrt{73}}{4}\right)^2\)
\(=\left(2x-\frac{3}{4}-\frac{\sqrt{73}}{4}\right)\left(2x-\frac{3}{4}+\frac{\sqrt{73}}{4}\right)\)
\(=\left(2x-\frac{3+\sqrt{73}}{4}\right)\left(2x+\frac{-3+\sqrt{73}}{4}\right)\)
\(x^2+2x-3\)
\(=x^2-x+3x-3\)
\(=x\left(x-1\right)+3\left(x-1\right)\)
\(=\)\(\left(x+3\right)\left(x-1\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) \(\left(1\right)\)
đặt \(x^2+5x+5=t\)
\(\left(1\right)\)\(=\) \(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
hay \(\left(1\right)=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
học tốt
Nick sv2 td 500tr sm ko đệ lấy ko
a. (x+2)(x+5)(x+3)(x+4)-24=(x^2+7x+10)(x^2+7x+12)-24
Đặt x^2+7x+10=a ta có:
a(a+2)-24=a^2+2a+1-25=(a+1)^2-25=(a+1+5)(a+1-5)=(a+6)(a-4)=(x^2+7x+10+6)(x^2+7x+10-4)=(x^2+7x+16)(x^2+7x+6)
Từ gt
\(\Leftrightarrow\)(x+2)(x+5)(x+4)(x+3) - 24 =(x\(^2\)+ 7x+10)(x\(^2\)+7x+12)-24
Đặt x\(^2\)+ 7x+11=a
\(\Leftrightarrow\)(a-1)(a+1) -24
\(\Leftrightarrow\)a\(^2\)-1-24\(\Leftrightarrow\)a\(^{^2}\)-25\(\Leftrightarrow\)(a-5)(a+5) Thay a= x\(^2\)+7x+11 \(\Rightarrow\)kq
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(t=x^2+7x+11\)
đến đây biến đổi theo t rồi thay trở lại
a, Nhóm (x+2)(x+5) và (x+3)(x+4) ta được
A = \(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
- Đặt \(x^2+7x+11=a\)=> \(A=\left(x-1\right)\left(x+1\right)-24\)
\(=a^2-1-24\)
\(=\left(a-5\right)\left(a+5\right)\)
\(=\left(x^2-7x+6\right)\left(x^2-7x+16\right)\)
\(=\left(x-6\right)\left(x-1\right)\left(x^2-7x+16\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(t=x^2+7x+11\)
đến đây biến đổi theo t rồi thay trở lại
mk ghi kết quả thôi nhé, nếu từ kết quả mak k biết biến đổi thì ib cho mk
\(x^5-7x^4-x^3+43x^2-36=\left(x-6\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
câu thứ 2 bạn ktra lại đề
\(x^4+2x^3-15x^2-18x+64=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)
\(x^3-x^2-4=\left(x-2\right)\left(x^2+x+2\right)\)
\(x^3-3x^2-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
a) \(x^5-7x^4-x^3+43x^2-36\)
\(=x^3\left(x^2-1\right)-7x^2\left(x^2-1\right)+36\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^3-7x^2+36\right)=\left(x-1\right)\left(x+1\right)\left(x^3+2x^2-9x^2-18x+18x+36\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^9-9x+18\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x-6\right)\)
c) \(x^4+2x^3-15x^2-18x+64\)
\(=x^3\left(x-2\right)+4x^2\left(x-2\right)-7x\left(x-2\right)-32\left(x-2\right)\)
\(=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)
y^4+64
=(y^2)^2+16y^2+64-16y^2
=(y^2+8-4x)(x^2+8+4x)
x^2+4
=x^2+2x^2+4-2x^2
=(x+2)^2-2x^2
=(x^2+2-2x)(x^2+2+2x)
x^4+16
=(x^2)^2+4x^2+16-4x^2
=(x+4)^2-4x^2
=(x^2+4-4x)(x^2+4+4x)
x^4y^4+4
=x^4y^4+4x^4+2^2-4x^4
=(x^4y^4+2)^2-(2x^2)^2
=(x^4y^4+2+2x^2)(x^4y^4+2-2x^2)
4x^4y^4+1
=4x^4y^4+x^4+1-x^4
=(2x^4y^4+1)^2-(x^2)^2
=(2x^4y^4+1-x^2)(2x^4y^4+1+x^2)
Mình ko bt câu D đúng hay sai nữa. Mà lỡ sai bạn đừng giận mình nha!
1. Không phân tích được thành phân tử vì a^4 + 4 > 0 và a thuộc R