Cho \(\Delta ABC\) có \(\widehat{A}\) = 900, điểm M thuộc BC. Vẽ điểm D đối xứng vs M qua AB. Vẽ điểm E đối xứng vs M qua AC.
a) C/m AD = AE
b) C/m D, A, E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nối A vs M
a) ta có: M đối xưng vs D qua AB=> AB là đg trung trực của DM =>AD=AM(ĐL) (1)
Do M đx vs E qua AC nên AC là đg trung trực của ME=>AE=AM (2)
từ (1),(2) => AD=AE
b)ta có : DAB = BAM (vì AB là đg tt của DM) =>DAB+BAM=2. BAM (3)
mặt khác: EAC=CAM(vì AC là đg tt của EM)=>EAC+CAM=2.CAM (4)
từ (3),(4)=>DAB+BAM+MAC+CAE=2(BAM+CAM)=2.90=180 (vì BAM+CAM=BAC=90)
=>3 điểm D,A,E thẳng hàng
Do lỗi Online Math nên mình không gửi câu trả lời được. Mình phải dùng paint .
a: ta có: M và D đối xứng nhau qua BA
nên AB là đường trung trực của MD
=>AM=AD
=>ΔAMD cân tại A
mà AB là đường cao
nênAB là phân giác của góc MAD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE
=>ΔAME cân tại A
mà AC là đường cao
nên AC là phân giác của góc MAE(2)
Ta có: AD=AM
AE=AM
Do đó: AE=AD
b: Từ (1) và (2) suy ra \(\widehat{EAD}=\widehat{EAM}+\widehat{DAM}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)
hay E,A,D thẳng hàng
Theo giả thiết ta có:
+ D đối xứng với M qua AB.
+ E đối xứng với M qua AC.
+ A đối xứng với A qua AB, AC.
⇒ AD đối xứng với AM qua AB, AE đối xứng với AM qua AC.
Áp dụng tính chất đối xứng ta có:
⇒ AD = AE ⇒ (đpcm).
Theo giả thiết ta có:
+ D đối xứng với M qua AB.
+ E đối xứng với M qua AC.
+ A đối xứng với A qua AB, AC.
AD đối xứng với AM qua AB, AE đối xứng với AM qua AC.
⇒ Áp dụng tính chất đối xứng ta có:
⇒ (đpcm).
Vì D đối xứng với M qua trục AB
⇒ AB là đường trung trực của MD.
⇒ AD = AM (t/chất đường trung trực) (1)
Vì E đối xứng với M qua trục AC
⇒ AC là đường trung trực của ME
⇒ AM = AE (t/chất đường trung trực) (2)
Từ (1) và (2) suy ra: AD = AE
a: Ta có: M và D đối xứng nhau qua AB
nên AB là đường trung trực của MD
=>AM=AD
=>ΔAMD cân tại A
mà AB là đường cao
nên AB là phân giác của góc MAD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE
=>ΔAME cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc MAE(2)
Ta có: AD=AM
AE=AM
Do đó: AE=AD
b: Từ (1) và (2) suy ra góc DAE=2xgóc BAC=140 độ
=>góc AED=(180-140)/2=20 độ
a) D đx với m qua AB
=> AB là trung trực của MD
=> AD=AM
E đx với M qua AC
=> AM=AE
=> AD=AE
b) AD=AM => tam giác ADM cân
=>góc DAB =góc MAB
tam giác AME cân
=> góc MAC= góc CAE
do đó: DAB+MAB+MAC+CAE=2(MAB+MAC)=2.70=140 độ
hay góc DAE=140 độ
a: Ta có: M và D đối xứng nhau qua AB
nên AB là đường trung trực của MD
=>AM=AD
Xét ΔAMD có AM=AD
nên ΔAMD cân tại A
mà AB là đường cao
nên AB là phân giác của góc MAD(1)
Ta có: M và E đối xứng nhau qua AC
nên AC là đường trung trực của ME
=>AM=AE
mà AC là đường cao
nên AC là tia phân giác của góc MAE(2)
Ta có: AM=AD
AM=AE
Do đó: AD=AE
b: Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot\left(\widehat{BAM}+\widehat{CAM}\right)=180^0\)
nên E,A,D thẳng hàng