Tìm \(x,y\in N\) biết:
\(\left(x-y\right)^2+4.\left(y-1\right)^2=9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-2}{2}=\dfrac{y-4}{3}=\dfrac{z-8}{5}\)
\(\Rightarrow\dfrac{x-2}{2}+2=\dfrac{y-4}{3}+2=\dfrac{z-8}{5}+2\)
\(\Rightarrow\dfrac{x+2}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{5}\)
\(\Rightarrow\left(\dfrac{x+2}{2}\right)^2=\left(\dfrac{y+2}{3}\right)^2=\left(\dfrac{z+2}{5}\right)^2\)
\(\Rightarrow\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}=\dfrac{3.\left(y+2\right)^2}{27}\dfrac{\left(x+2\right)^2+3\left(y+2\right)^2-\left(z+2\right)^2}{4+27-25}=\dfrac{24}{6}=4\)\(\Rightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=16\\\left(y+2\right)^2=36\\\left(z+2\right)^2=100\end{matrix}\right.\)
Bạn chia trường hợp rồi tìm x,y,z nhé
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}x+y=1\\x^3+y^3=x^2+y^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x^2+y^2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\x^2-xy+y^2-x^2-y^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=1\\y=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+y^2=5\\x^4-x^2y^2+y^4=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\\left(x^2+y^2\right)^2-3x^2y^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\\left(5\right)^2-3x^2y^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\-3x^2y^2=-12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\x^2y^2=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\\left(5-y^2\right)y^2=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\-y^4+5y^2-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\-y^4+5y^2-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=5-y^2\\\left[{}\begin{matrix}y^2=1\\y^2=4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2=5-y^2\\y^2=1\end{matrix}\right.\\\left\{{}\begin{matrix}x^2=5-y^2\\y^2=4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2=4\\y^2=1\end{matrix}\right.\\\left\{{}\begin{matrix}x^2=1\\y^2=4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
vậy \(S=\left\{\left(2;1\right),\left(2;-1\right),\left(-2;1\right),\left(-2;-1\right),\left(1;2\right),\left(1;-2\right),\left(-1;2\right),\left(-1;-2\right)\right\}\)
4) \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^5-1=-y^5\\x^9-x^4+y^9-y^4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x^5-1=-y^5\\y^5-1=-x^5\end{matrix}\right.\\x^4\left(x^5-1\right)+y^4\left(y^5-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^5+y^5=1\\x^4\left(-y^5\right)+y^4\left(-x^5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^5+y^5=1\\-x^4y^4\left(x+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^5+y^5=1\\\left[{}\begin{matrix}x=0\\y=0\\x+y=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^5+y^5=1\\x=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^5+y^5=1\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^5+y^5=1\\x=-y\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-y\\x^5-x^5=1\end{matrix}\right.\end{matrix}\right.\)
vậy \(S=\left\{\left(1;0\right),\left(0;1\right)\right\}\)
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z