phân tích nhân tử theo phương pháp ẩn phụ:
a, (x^2 +3x+2)(x^2 +11x+30)−5
b, (x+a) (x+2a) (x+3a) (x+4a) + a4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai câu đầu tham khảo
Câu hỏi của Bangtan Sonyeondan - Toán lớp 8 - Học toán với OnlineMath
c) \(E=\left(x+a\right)\left(x+2a\right)\left(a+3a\right)\left(x+4a\right)+a^4\)
\(=\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(a+3a\right)+a^4\)
\(=\left(x^2+5ax+4a^2\right)\left(a^2+5ax+6a^2\right)+a^4\)(1)
Đặt \(x^2+5ax+4a^2=t\)
\(\Rightarrow\left(1\right)=t\left(t+2a^2\right)+a^4\)
\(=t^2+2a^2t+a^4=\left(t+a^2\right)^2\)(2)
Mà \(x^2+5ax+4a^2=t\)
Nên \(\left(2\right)=\left(x^2+5ax+5a^2\right)^2\)
= (-2a ^2 +4a)(1-x)
= -2 (a^2 -2a)(1-x)
= -2a(a-2)(1-x)
= 2a(a-2)(x-1)
\(-2a^2\left(x-1\right)+4a\left(1-x\right)\)
\(=-a\cdot2a\left(x-1\right)-2\cdot2a\left(x-1\right)\)
\(=2a\left(x-1\right)\left(-a-2\right)\)
a,(x+y)(2a-4)
b,(x+y)(a-b)
c,a(b+a)(x-5)
d,2a(a+2)(x+y)
**** cho mk nha
a: \(=x^4-5x^3+4x^3-20x^2+7x^2-35x+4x-20\)
\(=\left(x-5\right)\left(x^3+4x^2+7x+4\right)\)
\(=\left(x-5\right)\left(x^3+x^2+3x^2+3x+4x+4\right)\)
\(=\left(x-5\right)\left(x+1\right)\left(x^2+3x+4\right)\)
b: Đề sai rồi bạn
a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
\(a,x^2-5x+6\\=x^2-3x-2x+6\\=x(x-3)-2(x-3)\\=(x-3)(x-2)\\---\\b,3x^2+9x-30\\=3x^2-6x+15x-30\\=3x(x-2)+15(x-2)\\=(x-2)(3x+15)\\=3(x-2)(x+5)\\---\)
\(c,x^2-3x+2\\=x^2-x-2x+2\\=x(x-1)-2(x-1)\\=(x-1)(x-2)\\---\\d,3x^2-5x-2\\=3x^2-6x+x-2\\=3x(x-2)+(x-2)\\=(x-2)(3x+1)\\Toru\)
\(3,\)Nhẩm nghiệm của đa thức trên ta đc : -1
Ta có lược đồ sau :
1 | 1 | -4 | -4 | |
-1 | 1 | 0 | -4 | 0 |
Phân tích thành nhân tử ta có :\(\left(x+1\right)\left(x^2-4\right)\)
\(a.\left(x^2+2x+x+2\right)\left(x^2+5x+6x+30\right)-5\)
\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\left(x+6\right)-5=\left(x^2+7x+6\right)\left(x^2+7x+10\right)\)
Đặt \(x^2+7x+8=a\Rightarrow\text{Biểu thức }=\left(a-2\right)\left(a+2\right)-5=a^2-9=\left(a-3\right)\left(a+3\right)\)
nên : \(BT=\left(x^2+7x+5\right)\left(x^2+7x+11\right)\)
b.\(BT=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
Đặt \(x^2+5ax+5a^2=y\Rightarrow BT=\left(y-a^2\right)\left(y+a^2\right)+a^4=y^2=\left(x^2+5ax+5a^2\right)^2\)