K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

sửa đề : \(\sqrt{2}x+2\sqrt{x}+4=0\)ĐK : x >= 0 

\(\Leftrightarrow x+\sqrt{x}+2=0\)

vì \(x+\sqrt{x}+2=x+\sqrt{x}+\frac{1}{4}+\frac{7}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vậy pt vô nghiệm 

đề của bạn ;-; \(\sqrt{2}x+2\sqrt{2}+4=0\Leftrightarrow x+2+2\sqrt{2}=0\Leftrightarrow x=-2-2\sqrt{2}\)

23 tháng 8 2021

mình bổ sung đề của bạn ;-; \(x=-2-2\sqrt{2}\)(ktmx>=0)

Vậy pt vô nghiệm 

7 tháng 9 2020

+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)    \(\left(ĐK:x\ge0\right)\)

        \(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)

        \(\Leftrightarrow3\sqrt{3x}=6\)

        \(\Leftrightarrow\sqrt{3x}=2\)

        \(\Leftrightarrow3x=4\)

        \(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)

Vậy \(S=\left\{\frac{4}{3}\right\}\)

+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\)    \(\left(ĐK:x\ge1\right)\)

        \(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

        \(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)

        \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)

 Vậy \(S=\left\{1,15\right\}\)

+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\)       \(\left(ĐK:x\ge0\right)\)

         \(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

         \(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

   Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)

    \(\Rightarrow\)\(\sqrt{x}-4< 0\)

   \(\Leftrightarrow\)\(\sqrt{x}< 4\)

   \(\Leftrightarrow\)\(x< 16\)

   Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)

 Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)

7 tháng 9 2020

\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)  (Đk: x \(\ge\)0)

<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)

<=> \(3\sqrt{3x}=6\)

<=> \(\sqrt{3x}=2\)

<=> \(3x=4\)

<=> \(x=\frac{4}{3}\)

\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)

<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\) 

<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)

\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)

<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

<=>  \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)

<=> \(\sqrt{x}< 4\) <=> \(x< 16\)

Kết hợp với đk => S = {x|0 < x < 16}

20 tháng 9 2023

\(\sqrt{4-x^2}=\sqrt{x+2}\) (ĐK: \(-2\le x\le2\))

\(\Leftrightarrow4-x^2=x+2\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow x^2+2x-x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

_______

\(\sqrt{9x^2-4}=2\sqrt{3x-2}\) (ĐK: \(x\ge\dfrac{2}{3}\)

\(\Leftrightarrow9x^2-4=4\left(3x-2\right)\)

\(\Leftrightarrow9x^2-4=12x-8\)

\(\Leftrightarrow9x^2-12x+4=0\)

\(\Leftrightarrow\left(3x-2\right)^2=0\)

\(\Leftrightarrow3x=2\)

\(\Leftrightarrow x=\dfrac{2}{3}\left(tm\right)\)

5 tháng 5 2023

loading...  

\(B=\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}-1}\right)\cdot\dfrac{\sqrt{x}-1}{4\sqrt{x}+4}=\dfrac{1}{2}\)

26 tháng 7 2021

Bài 2 

b, `\sqrt{3x^2}=x+2`          ĐKXĐ : `x>=0`

`=>(\sqrt{3x^2})^2=(x+2)^2`

`=>3x^2=x^2+4x+4`

`=>3x^2-x^2-4x-4=0`

`=>2x^2-4x-4=0`

`=>x^2-2x-2=0`

`=>(x^2-2x+1)-3=0`

`=>(x-1)^2=3`

`=>(x-1)^2=(\pm \sqrt{3})^2`

`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$

`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$

Vậy `S={1+\sqrt{3};1-\sqrt{3}}`

26 tháng 7 2021

mình nghĩ ĐKXĐ là như này : 

x+2≥0

➩ x≥-2

có phải k

13 tháng 8 2021

N=\(\dfrac{x\sqrt{2}}{\sqrt{2x}\left(\sqrt{2}+\sqrt{x}\right)}+\dfrac{\sqrt{2}\left(\sqrt{x}-\sqrt{2}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

N=\(\dfrac{\sqrt{x}}{\sqrt{2}+\sqrt{x}}+\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{2}}\)=1

13 tháng 8 2021

Cảm ơn bạn

10 tháng 7 2020

Sửa đề :

a) \(A=\left(\frac{x-\sqrt{x}}{x-\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{x-\sqrt{x}-5}{x-\sqrt{x}-2}\right)\)

\(\Leftrightarrow A=\frac{x-\sqrt{x}+4\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{x-4-x+\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow A=\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}\)

b) \(A=4\)

\(\Leftrightarrow\frac{x+3\sqrt{x}+4}{\sqrt{x}+1}=4\)

\(\Leftrightarrow x+3\sqrt{x}+4=4\sqrt{x}+4\)

\(\Leftrightarrow x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy \(A=4\Leftrightarrow x\in\left\{0;1\right\}\)

NV
20 tháng 1 2022

Do \(x\ge0\Rightarrow2x+2+5\sqrt{x}\ge0+2+0=2>0\Rightarrow\dfrac{1}{2x+2+5\sqrt{x}}>0\)

\(2\sqrt{x^2+4x+1}+\sqrt{x}\ge2\sqrt{0+4.0+1}+0=2>0\Rightarrow\dfrac{1}{2\sqrt{x^2+4x+1}+\sqrt{x}}>0\)

\(\Rightarrow\dfrac{1}{2x+2+5\sqrt{x}}+\dfrac{1}{2\sqrt{x^2+4x+1}+\sqrt{x}}>0\)