K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(=\dfrac{1}{mn^2}\cdot\dfrac{n^2\cdot\left(-m\right)}{\sqrt{5}}=\dfrac{-\sqrt{5}}{5}\)

b: \(=\dfrac{m^2}{\left|2m-3\right|}=\dfrac{m^2}{3-2m}\)

c: \(=\left(\sqrt{a}+1\right):\dfrac{\left(a-1\right)^2}{\left(1-\sqrt{a}\right)}=\dfrac{-\left(a-1\right)}{\left(a-1\right)^2}=\dfrac{-1}{a-1}\)

a: \(N=\dfrac{x+\sqrt{x}+1+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}+2}{x\sqrt{x}-1}\)

b: \(P=M\cdot N\)

\(=\dfrac{3\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{3x+3\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)

Cái này mình chỉ rút gọn được P thôi, còn P nguyên thì mình xin lỗi bạn rất nhiều nha

9 tháng 5 2023

uk

3 tháng 10 2021

\(a,M=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\\ M=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,M< \dfrac{1}{6}\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}< 0\\ \Leftrightarrow\dfrac{2\sqrt{a}-4-\sqrt{a}}{6\sqrt{a}}< 0\Leftrightarrow\dfrac{\sqrt{a}-4}{6\sqrt{a}}< 0\\ \Leftrightarrow\sqrt{a}-4< 0\left(6\sqrt{a}>0\right)\\ \Leftrightarrow a< 16\\ \Leftrightarrow0< a< 16\left(kết.hợp.ĐKXĐ\right)\)

 

 

18 tháng 7 2021

\(=>M=\dfrac{2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}-1\right)-5+\sqrt{x}}{x-1}\)

\(M=\dfrac{2\left(\sqrt{x}+1+\sqrt{x}-1\right)-5+\sqrt{x}}{x-1}=\dfrac{4\sqrt{x}-5+\sqrt{x}}{x-1}\)

\(M=\dfrac{5\sqrt{x}-5}{x-1}=\dfrac{5\left(\sqrt{x}-1\right)}{x-1}=\dfrac{5}{\sqrt{x}+1}\)

18 tháng 7 2021

\(M=\dfrac{2}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+1}-\dfrac{5-\sqrt{x}}{x-1}\)

\(=\dfrac{2}{\sqrt{x}-1}+\dfrac{2}{\sqrt{x}+1}+\dfrac{\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}-1\right)+\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{5\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{5}{\sqrt{x}+1}\)

Câu 2: 

Ta có: \(M=\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)\left(1+\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(1-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(=1-a\)

Câu 1: 

Ta có: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)

\(=1\)

28 tháng 7 2023

a) \(M=3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(M=3\sqrt{3}-2\sqrt{3}-\left|\sqrt{3}-1\right|\)

\(M=\sqrt{3}-\sqrt{3}+1\)

\(M=1\)

b) Ta có:

\(N=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(N=\left(\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)

\(N=\left(\dfrac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right)\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)

\(N=\dfrac{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)}\)

\(N=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

Theo đề ta có: \(M=2N\)

Khi: \(1=2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\)

\(\Leftrightarrow1=\dfrac{2\sqrt{a}-2}{\sqrt{a}}\)

\(\Leftrightarrow\sqrt{a}=2\sqrt{a}-2\)

\(\Leftrightarrow2\sqrt{a}-\sqrt{a}=2\)

\(\Leftrightarrow\sqrt{a}=2\)

\(\Leftrightarrow a=4\left(tm\right)\)

a: \(M=7\sqrt{3}+7\sqrt{2}-7\sqrt{3}-6\sqrt{2}=\sqrt{2}\)

\(N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(x-4\right)}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b: Để N=M2 thì \(3\sqrt{x}=2\sqrt{x}+4\)

hay x=16