Nếu a+b+c chia hết cho 6 thì \(a^3+b^3+c^3\) chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu (a3+b3+c3) - (a+b+c)
=a3+b3+c3-a-b-c
=(a3-a) + (b3-b)+(c3-c)
=a(a2-1)+ b(b2-1) +c(c2-1)
=a(a-1)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)
Vì a(a-1)(a+1) là tích 3 số tự nhiên liên tiếp=> chia hết cho 2 và 3
Mà (2;3)=1
=> a(a-1)(a+1) chia hết cho 6
=> (a3 +b3+c3) - (a+b+c) chia hết cho 6
Mà a+b+c chia hết cho 6
=> a3+b3+c3 chia hết cho 6 (đpcm)
a, nếu tổng của 2 số chia hết cho 9 và một trong hai số chia hết cho 3 thì số còn lại chua hết cho 3.Đ
b, nếu hiệu của 2 số chia hết cho 6 và số thứ nhất chia hết cho 6 thì số thứ hai chia hết cho 3.Đ
c, nếu a chia hết cho 18, b chia hết cho 9, c không chia hết cho 6 thì a+b+c không chia hết cho 3.S
a) Nếu a : 3 và b : 3 thì tổng a + b chia hết cho 3
b) Nếu a : 2 và b : 4 thì tổng a + b chia hết cho 2
c) Nếu a : 6 và b : 9 thì tông a + b chia hết cho 3
;llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
câu 1 nếu A chia hết cho 2 thì A là số chẵn
nếu A không chia hết cho 2 thì A là số lẻ
câu 2 :
a) có thể chia hết cho 6
số chia hết cho 9 thì chia hết cho 3
Lời giải:
Ta có \(a+b+c\) chia hết cho $6$
\(\Leftrightarrow (a+b+c)^3\vdots 6\Leftrightarrow a^3+b^3+c^3+3(a+b)(b+c)(c+a)\vdots 6\) \((1)\)
Theo định lý Dirichlet, trong ba số \(a,b,c\) luôn tồn tại ít nhất hai số có cùng số dư khi chia cho $2$, không mất tính tổng quát giả sử là hai số đó là \(a\equiv b\equiv r\pmod 2\)
\(\Rightarrow a+b\equiv 2r\equiv 0\pmod 2\)
Do đó \((a+b)(b+c)(c+a)\vdots 2\forall a,b,c\in\mathbb{N}\Rightarrow 3(a+b)(b+c)(c+a)\vdots 6\)
Kết hợp với $(1)$ suy ra \(a+b+c\vdots 6\Leftrightarrow a^3+b^3+c^3\vdots 6\)
Ta có đpcm
Ta có a+b+ca+b+c chia hết cho 66
⇔(a+b+c)3⋮6⇔a3+b3+c3+3(a+b)(b+c)(c+a)⋮6⇔(a+b+c)3⋮6⇔a3+b3+c3+3(a+b)(b+c)(c+a)⋮6 (1)(1)
Theo định lý Dirichlet, trong ba số a,b,ca,b,c luôn tồn tại ít nhất hai số có cùng số dư khi chia cho 22, không mất tính tổng quát giả sử là hai số đó là a≡b≡r(mod2)a≡b≡r(mod2)
⇒a+b≡2r≡0(mod2)⇒a+b≡2r≡0(mod2)
Do đó (a+b)(b+c)(c+a)⋮2∀a,b,c∈N⇒3(a+b)(b+c)(c+a)⋮6(a+b)(b+c)(c+a)⋮2∀a,b,c∈N⇒3(a+b)(b+c)(c+a)⋮6
Kết hợp với (1)(1) suy ra a+b+c⋮6⇔a3+b3+c3⋮6a+b+c⋮6⇔a3+b3+c3⋮6
Ta có đpcm.Chuc ban thi tot