C/m rằng
2x^2+2x+1 > 0 \(\forall\)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mệnh đề trên là mệnh đề đúng mà, sai đâu mà sai bạn? Chắc giáo viên nhầm đó
Một mệnh đề "tồn tại" muốn đúng thì chỉ cần chỉ ra một trường hợp đúng (nhiều hơn 1 cũng ko vấn đề)
Một mệnh đề "với mọi" thì chỉ cần chỉ ra 1 trường hợp sai, mệnh đề đó sẽ sai (có nghĩa muốn "với mọi" đúng thì phải đúng tất cả trường hợp)
Đặt \(A=2x^4+2x+1\)
\(=2x^4+4x^3+2x^2-2x^2-4x^3+2x+1\)
\(=\left(2x^4-4x^3+2x^2\right)+\left(4x^3-2x^2+2x\right)+1\)
\(=2x^2\left(x^2-2x+1\right)+2x\left(2x^2-x+1\right)+1\)
\(=2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{1}{2\sqrt{2}}+\frac{1}{8}-\frac{1}{8}+1\right]+1\)
\(=2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\right]+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0;\forall x\\\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2\ge0;\forall x\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x^2\left(x-1\right)^2\ge0;\forall x\\\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}>0;\forall x\end{cases}}\)
\(\Rightarrow2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\right]+1>0;\forall x\)
Hay \(A>0;\forall x\)
1: \(x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
2: \(2x^2+2x+1\)
\(=2\left(x^2+x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)
3:
\(x^2+y^2=\left(x-y\right)^2+2xy=7^2+2\cdot60=169\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2\cdot\left(xy\right)^2\)
\(=169^2-2\cdot60^2=21361\)
a/ Đúng, khi \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
b/ Sai, ví dụ \(x=0\) thì \(2x^2-3x-5\ne0\)
c/ Sai, khi \(x=-1\)
d/ Sai, \(3x^2+2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{3}\end{matrix}\right.\) mà \(\left\{-1;-\frac{1}{3}\right\}\notin N\)
e/ Đúng, nhìn câu trên ta thấy pt có 2 nghiệm hữu tỉ
f/ Đúng, vì \(x^2+2x+5=\left(x+1\right)^2+4>0\) \(\forall x\in R\)
M = x^2 - 4x
= x^2 - 4x + 4 - 4
= (x^2 - 4x + 4 ) - 4
=(x - 2 )^2 - 4
Vì (x - 2 )^2 \(\ge\)0 => (x - 2 )^2 - 4 \(\ge\) - 4 ( với \(\forall\) x )
Dấu '' = '' sảy ra <=> (x - 2 )^2 = 0
<=> x - 2 = 0
<=> x = 2
Vậy min M = - 4 Khi x = 2
M = x2 - 4x = (x2 - 4x + 4) - 4 = (x - 2)2 - 4
Vì (x - 2)2 ≥ 0 với mọi x
Mà (x - 2)2 - 4 ≥ - 4 với mọi x
Vậy M đạt giá trị nhỏ nhất <=> (x - 2)2 = 0 <=> x = 2
D = x2 - 2x + 5 = (x2 - 2x + 1) + 4 = (x - 1)2 + 4
Vì (x - 1)2 ≥ 0 với mọi x
Mà (x - 1)2 + 4 ≥ 4 với mọi x
=> (x - 1)2 + 4 > 0 (luôn dương với mọi x)
=> x2 - 2x + 5 > 0 (luôn dương với mọi x)
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )
các bạn ơi đề này mình lỡ ấn sai rồi, nên các bạn ko cần giải nó nhé
\(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2\)
Nếu \(x^2\ge0\) thì \(\left(x+1\right)^2>0\)
Ngược lại \(\left(x+1\right)^2\ge0\) thì \(x^2>0\)
=> x2 + (x + 1)2 > 0 \(\forall x\)
hay \(2x^2+2x+1>0\forall x\)
--> đpcm
\(=x^2+x^2+2x+1\)
\(=x^2+\left(x+1\right)^2\)
Ta có: (x+1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) x2 + (x+1)2 > 0 với mọi x
Vậy bài toán trên luôn dương