tìm GTNN
B = 3x2 + 6x - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài ko chính xác
Biểu thức này chỉ có GTLN, không có GTNN
Đặt và thực hiện phép tính ta có :
Vậy chọn đa thức thứ hai.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2$
$\Leftrightarrow B.3\geq 4$
$\Leftrightarrow B\geq \frac{4}{3}$
Vậy $B_{\min}=\frac{4}{3}$
Giá trị này đạt tại $a=b=\frac{3}{2}$
\(a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Ta có tính chất `|P|>=P,|P|>=-P`
`=>{(|x-2|>=x-2),(|x-4|>=4-x):}`
`=>B>=x-2+4-x=2`
Dấu "=" xảy ra khi `{(x-2>=0),(x-4<=0):}`
`<=>{(x>=2),(x<=4):}`
`<=>2<=x<=4`
B=2(x^2+2.x.1/4 +1/16)^2 -57/8
=2.(x+1/4)^2 -57/8
MinB=-57/8 khi x=-1/4
\(B=-14+2x^2+x=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{113}{8}=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{113}{8}\ge-\dfrac{113}{8}\)\(ĐTXR\Leftrightarrow x=-\dfrac{1}{4}\)
\(a,\Rightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\\ \Rightarrow26x=26\Rightarrow x=1\\ b,\Rightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\\ \Rightarrow39x=-39\Rightarrow x=-1\)
a: =4(x^2-3/2x-5)
=4(x^2-2*x*3/4+9/16-89/16)
=4(x-3/4)^2-89/4>=-89/4
Dấu = xảy ra khi x=3/4
b: =3(x^2-8/3x+1)
=3(x^2-2*x*4/3+16/9-7/9)
=3(x-4/3)^2-7/3>=-7/3
Dấu = xảy ra khi x=4/3
Lời giải:
a. $A=4x^2-6x-20=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{89}{4}$
$=(2x-\frac{3}{2})^2-\frac{89}{4}$
Vì $(2x-\frac{3}{2})^2\geq 0$ với mọi $x$
$\Rightarrow A\geq 0-\frac{89}{4}=\frac{-89}{4}$
Vậy $A_{\min}=\frac{-89}{4}$. Giá trị này đạt tại $2x-\frac{3}{2}=0$
$\Leftrightarrow x=\frac{3}{4}$
b.
$B=3x^2-8x+1=3(x^2-\frac{8}{3}x)+1$
$=3[x^2-2.x.\frac{4}{3}+(\frac{4}{3})^2]-\frac{13}{3}$
$=3(x-\frac{4}{3})^2-\frac{13}{3}\geq 3.0-\frac{13}{3}=\frac{-13}{3}$
Vậy $B_{\min}=\frac{-13}{3}$. Giá trị này đạt tại $x-\frac{4}{3}=0$
$\Leftrightarrow x=\frac{4}{3}$
Ta có : \(-4x^2+4x-5=-\left(4x^2-4x+5\right)=-\left(2x-1\right)^2-4\le-4\)
\(\Rightarrow B\ge\dfrac{15}{-4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN B là -15/4 khi x = 1/2
9 x 2 - 6 x + 1 ≠ 0 ⇒ 3 x - 1 2 ≠ 0 ⇒ x ≠ 1 / 3 ta có x = - 8 ≠ 1/3
Thay x = - 8 vào biểu thức, ta có:
= 3( x2 + 2x + 1) - 4
= 3(x + 1)2 - 4 \(\ge\) -4
Vậy Min B = -4 khi x + 1 = 0 => x = -1
B=3x^1+6x-1 > -1
=>Bmin=-1
GTNN của B=-1
tại x=....