K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 7 2017

Lời giải:

Làm đảo thứ tự chút nhé.

b)

Đặt \(\sin x=t \) ( \(t\in [-1,1]\)) Khi đó

\(\Rightarrow \sin ^4x+(\sin x+1)^4=t^4+(t+1)^4=2t^4+4t^3+6t^2+4t+1\)

\(\Leftrightarrow f(t)=2t^4+4t^3+6t^2+4t+1=m\)

\(f'(t)=8t^3+12t^2+12t+4=0\Leftrightarrow t=\frac{-1}{2}\)

Lập bảng biến thiên.

Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Dựa vào bảng biến thiên suy ra để PT có nghiệm thì \(m\geq \frac{1}{8}\)

a) Với \(m=\frac{1}{8}\) thì PT có nghiệm \(t=\frac{-1}{2}\Leftrightarrow \sin x=\frac{-1}{2}\Rightarrow x=\frac{-\pi}{6}+2k\pi\) với \(k\in\mathbb{Z}\)

29 tháng 8 2021

1.

Phương trình có nghiệm khi \(1+m\in\left[-1;1\right]\Rightarrow m\in\left[-2;0\right]\).

2.

Phương trình có nghiệm khi \(5+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow5+m^2\ge m^2+2m+1\)

\(\Leftrightarrow2m\le4\)

\(\Leftrightarrow m\le2\)

7 tháng 2 2022

a. Thay m=-3 ta có: \(x^2-2x-3-1=0\Leftrightarrow x^2-2x-4=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)

b. Ta có, để phương trình có nghiệm kép thì: \(\Delta=0\Leftrightarrow2^2-4.1.\left(m-1\right)=0\Leftrightarrow m=2\)

c. Để phương trình có 2 nghiệm phân biệt thì:\(\Delta>0\Leftrightarrow2^2-4.1.\left(m-1\right)>0\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề ta có: \(x_1=2x_2\)\(\Rightarrow3x_2=2\Rightarrow x_2=\dfrac{2}{3}\Rightarrow x_1=\dfrac{4}{3}\Rightarrow m=\dfrac{17}{9}\)(TM)

7 tháng 2 2022

a, Thay m = -3 vào pt trên ta được 

\(x^2-2x-4=0\)

\(\Delta'=\left(-1\right)^2-\left(-4\right)=5>0\)

pt có 2 nghiệm pb 

\(x_1=2-\sqrt{5};x_2=2+\sqrt{5}\)

b, Để pt có nghiệm kép 

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m=0\Leftrightarrow m=2\)

 

13 tháng 5 2021

a, thay m=2 vào phương trình (1) ta được:

x^2-6.x+3=0

có: \(\Delta\)1=(-6)^2-4.3=24>0

vậy phương trình có 2 nghiệm phân biệt :

x3=(6+\(\sqrt{ }\)24)/2=3+\(\sqrt{ }\)6

x4=(6-\(\sqrt{ }\)24)/2=3-\(\sqrt{ }\)6

b, từ phương trình (1) ta có :

\(\Delta\)=[-2(m+1)]^2-4.(m^2-1)=(2m+2)^2-4m^2+4=4m^2+8m+4-4m^2+4

=8m+8

để pt(1) có 2 nghiệm x1,x2 khi \(\Delta\)\(\ge\)0<=>8m+8\(\ge\)0

<=>m\(\ge\)-1

 m\(\ge\)-1 thì pt(1) có 2 nghiệm x1,x2

theo vi ét=>x1+x2=2m+2

lại có x1+x2=1<=>2m+2=1<=>m=-1/2(thỏa mãn)

vậy m=-1/2 thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2=1

 

 

 

13 tháng 5 2021

\(x^2-2\left(m+1\right)x+m^2-1=0\)(1)

a,Thay m=2 vào pt (1) có

\(x^2-2\left(2+1\right)x+2^2-1=0\)

\(x^2-6x+3=0\)

\(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\) khi m=2

a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)

\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)

\(\Leftrightarrow4x^2-8x-17=0\)

\(\Leftrightarrow\left(2x-2\right)^2=21\)

hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)

b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)

\(=4+4m^2+16=4m^2+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

\(a,m=1\Rightarrow x^2+x-1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\\ b,\Delta=\left(2m-1\right)^2+4m=\left(2m\right)^2-4m+1+4m\\ =4m^2+1>0\forall m\)  

--> Phương trình luôn có 2 nghiệm phân biệt

--> Không có giá trị m để pt vô nghiệm

4 tháng 2 2022

a, Thay m = 1 vào pt trên ta được 

\(x^2+x-1=0\)

\(\Delta=1-4\left(-1\right)=1+5>0\)

Vậy pt luôn có 2 nghiệm pb 

\(x_1=\dfrac{-1-\sqrt{6}}{2};x_2=\dfrac{-1+\sqrt{6}}{2}\)

b, Ta có : \(\Delta=\left(2m-1\right)^2-4\left(-m\right)=4m^2+1< 0\)( vô lí )

Do \(4m^2\ge0\forall m\Rightarrow4m^2+1>0\forall m\)

hay ko có gtri nào của m để pt vô nghiệm 

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

6 tháng 3 2023

a, m\(x\) -2\(x\) + 3 = 0

Với m  = -4 ta có :

-4\(x\) - 2\(x\) + 3 = 0

-6\(x\)  + 3 = 0

6\(x\) = 3

\(x\) = 3 : 6

\(x\) = \(\dfrac{1}{2}\)

b,  Vì \(x\) = 2 là nghiệm của phương trình nên thay \(x\) = 2 vào phương tình ta có : m.2 - 2.2 + 3 = 0

                   2m - 1 = 0

                  2m = 1

                     m = \(\dfrac{1}{2}\) 

c, m\(x\) - 2\(x\) + 3 = 0

   \(x\)( m -2) + 3 = 0

  \(x\) = \(\dfrac{-3}{m-2}\)

   Hệ có nghiệm duy nhất khi m - 2 # 0 => m#2

d, Để phương trình có nghiệm nguyên thì:   -3 ⋮ m -2

   m - 2 \(\in\) { - 3; -1; 1; 3}

  m \(\in\) { -1; 1; 3; 5}