Rút gọn các biểu thức sau
Làm hộ mình câu b,d,e với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\\ b,=\dfrac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
a) Ta có: \(B=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)
\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b) Để B=16 thì \(4\sqrt{x+1}=16\)
\(\Leftrightarrow x+1=16\)
hay x=15
\(D=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{3\sqrt{x}+1}{x-1}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ D=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\\ D=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
b: Ta có: \(N=a^3+b^3+3ab\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)
\(=1-3ab+3ab\)
=1
Lời giải:
$A=\cos 2x-2\sin 5x\sin x=\cos 2x-2.\frac{-1}{2}[\cos (5x+x)-\cos (5x-x)]$
$=\cos 2x+\cos 6x-\cos 4x$
$=(\cos 2x+\cos 6x)-\cos 4x$
$=2\cos \frac{2x+6x}{2}\cos \frac{6x-2x}{2}-\cos 4x$
$=2\cos 4x\cos 2x-\cos 4x$
$=\cos 4x[2\cos 2x-1]$
Những đáp án A,B,C,D bạn đưa ra không có đáp án nào đúng cả.
Mình cảm ơn bạn nhiều ạ! Mình cũng làm ra như vậy mà biến đổi mãi không sao ra.
ĐKXĐ: \(x\ge0;x\ne3\)
\(B=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3\sqrt{x}-3}{x-9}\)
a: \(=\sqrt{3}-1-\sqrt{3}=-1\)
b: \(=2\sqrt{3}-10\sqrt{3}+4\sqrt{3}=-4\sqrt{3}\)
c: \(P=4\left(x-3\right)-3\left|x+3\right|\)
Trường hợp 1: x>=-3
\(P=4x-12-3x-9=x-21\)
Trường hợp 2: x<-3
P=4x-12+3x+9=7x-3
b , Ta có : \(\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\left(\sqrt{x}-\sqrt{y}\right)}\) = \(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
d , Ta có : \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=\left(\dfrac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\right)\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)= \(\dfrac{\left(1-a\right)+\sqrt{a}\left(1-a\right)}{1-\sqrt{a}}.\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
= \(\dfrac{\left(1-a\right)\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1-a\right)^2}\)
= \(\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)}=\dfrac{\left(1-a\right)}{\left(1-a\right)}=1\)
\(2\sqrt{3a}-\sqrt{75a}+\sqrt{\dfrac{13,5}{2a}}-\dfrac{2}{5}\sqrt{300a^3}\left(a>0\right)\)
=\(2\sqrt{3a}-\sqrt{5^2\cdot3a}+a\sqrt{\dfrac{13,5\cdot2a}{\left(2a\right)^2}}-\dfrac{2}{5}\sqrt{10^2\cdot a^2\cdot2}\)
=\(\left(2-5+\dfrac{3}{2}-4a\right)\sqrt{a}\)
=\(\dfrac{-11}{2}a\sqrt{a}\)