K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

ta co :2009^1du 2009 (mod 2011)    ;     2009^2 du 4(mod 2011)   ;     2009^10 du 1024(mod 2011)  ;    2009^20 du 845(mod 2011)       ;     2009^40du120(mod 2011)           ;2009^100 du 1450 (mod 2011)         ;2009^200 du 200(mod2011)          ;           2009^400 du503(mod 2011)         2009^1000 du 1194(mod 2011)            ;2009^2000 du 1848 mod2011                                                                                                                                                   ma 2009^2011=2009^2000.2009^10.2009    =>2009^2011 du 1848.1024.2009mod 2011                                                 hay 2009^2011 chia cho 2011du2009

11 tháng 1 2016

de sai roi tick minh nha

11 tháng 1 2016

bạn dùng đồng dư thức nhé

15 tháng 2 2019

Vì 2^2 chia 3 dư 1 nên 2^2010 chia 3 dư 1 suy ra 2^2011 chia 3 dư 2

15 tháng 2 2019

Ta có:\(2^5\equiv1\left(mod31\right)\)

\(\Rightarrow\left(2^5\right)^{402}\equiv1\left(mod31\right)\)

\(\Rightarrow2^{2010}\equiv1\left(mod31\right)\)

\(\Rightarrow2^{2011}\equiv2\left(mod31\right)\)

Vậy số dư khi chia \(2^{2011}\) cho 31 là 2.