K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Sửa đề; \(x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x\)

Vậy GTNN của biểu thức là 1 khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

25 tháng 7 2017

đề đúng chứ

25 tháng 6 2019

\(\text{x}^2+y^2-\text{x}+4y+5=\left(\text{x}^2-\text{x}+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{3}{4}=\left(\text{x}-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{3}{4}\) 

\(\ge0+0+\frac{3}{4}=\frac{3}{4}\).Dâu"=" xayr ra khi: 

\(\Leftrightarrow\hept{\begin{cases}\text{x}-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\text{x}=\frac{1}{2}\\y=-2\end{cases}}\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

16 tháng 12 2020

Ta có:

\(A=x^2+y^2+xy-2x-4y+2016\\ =\left(x+\dfrac{y}{2}-1\right)^2+\dfrac{3}{2}\left(y-1\right)^2+\dfrac{4027}{2}\\ \ge\dfrac{4027}{2}\)

Dấu bằng xảy ra khi và chỉ khi: 

\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)

14 tháng 8 2018

a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2

Vậy MinA=2 \(\Leftrightarrow\)x=2

b) B= -(x-1)2-(2y+1)2+7 \(\le\)7

Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)

Vậy MaxB=7 ....

14 tháng 8 2018

cảm ơn bạn nha

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

25 tháng 10 2018

 A = 0

b=0

hok tốt

25 tháng 10 2018

a) Ta có:

\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(=\left[x^2+5x-6\right]\left[x^2+5x+6\right]\)

Đặt x2 + 5x = t. Biểu thức đó là:

\(\left[t-6\right]\left[t+6\right]\)

\(=t^2-36\ge-36\forall t\)

Dấu "=" xảy ra \(\Leftrightarrow t=0\)

\(\Leftrightarrow x^2+5x=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy, Min(x - 1)(x + 2)(x + 3)(x + 6) = -36 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

13 tháng 7 2019

x2 - 2x + y2 - 4y + 7 = (x2 - 2x + 1) + ( y2 - 4y + 4) + 2 = (x - 1)2 + (y - 2)2 + 2

Vì (x - 1)2 ≥ 0 \(\forall\)x

    (y - 2)2 ≥ 0 \(\forall\)x

=> (x - 1)2 + (y - 2)2 ≥ 0 \(\forall\)x

=> (x - 1)2 + (y - 2)2 + 2  ≥ 2 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy GTNN của x2 - 2x + y2 - 4y +7 = 2 khi x = 1; y = 2

5 tháng 9 2020

Đặt \(A=x^2-2x+y^2-4y+7\)

\(\Rightarrow A=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x,y\)

hay \(A\ge2\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy \(minA=2\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)