CMR:
1, Nếu a, b > 0 thì a+b \(\ge\) 2\(\sqrt{ab}\)
2, Nếu n là STN và n2 chia hết cho 5 thì n chia hết cho 5
3, Nếu n là STN và n2 chia hết cho 3 thì n chia hết cho 3
4, Nếu n là STN và n chia hết cho 6 thì n2 chia hết cho 6
Giúp mình với :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với n là stn, có
n^2 chia hết cho 6 <=> n^2 chia hết cho 2 và 3 ( vì (2;3)=1 )
n^2 chia hết cho 2 => n^2 chia hết cho 2^2 <=> n chia hết cho 2 (1)
n^2 chia hết cho 3 => n^2 chia hết cho 3^2 <=> n chia hết cho 3 (2)
Từ (1)(2) kết hợp (2;3)=1 => n chia hết cho 6
1)Vì tổng của 2 số đó không chia hết cho 2
=>Tổng của chúng là số lẻ
=>Không thể cả 2 số đều cùng chẵn hoặc cùng lẻ
=>Có 1 số chẵn và 1 số lẻ
=>Tích của chúng là số chẵn(vì số nào nhân với số chẵn đều được tích là số chẵn)
=>Tích của chúng chia hết cho2
2)Ta có: a+a2=a.(a+1)
Vì a là số tự nhiên
=>a có 2 dạng là 2k hoặc 2k+1
Xét a=2k=>a.(a+1)=2k.(a+1) chia hết cho 2
=>a+a2 chia hết cho 2(1)
Xét a=2k+1=>a.(a+1)=a.(2k+1+1)=a.(2k+2)=a.(k+1).2 chia hết cho 2
=>a+a2 chia hết cho 2(2)
Từ (1) và (2) ta thấy: a+a2 chia hết cho 2
=>ĐPCM
1) trường hợp 1: chia 3 dư 0
-> chia hết cho 3
trường hợp 2 : chia 3 dư 1 -> n=3k+1
(3k+1)(3k+3)(3k+4 )
3(3k+1)(k+1)(3k+4) chia hết cho3
trường hơp 3; chia 3 dư hai-> n=3k+2
(3k+3)(3k+4)(3k+5)=3(k+1)(3k+4)(3k+5) chia hết cho 3
( ban kiem tra de dung khong 3 so tn lien tiep mới dc : (n+1)(n+2)(n+3)
câu 1 sai đề
Vì n(n+2)(n+3) = 3n+2+3 = 3n+5
3n chia hết cho 3 mà 5 ko chia hết cho 3
Suy ra với mọi STN n thì n(n+2)(n+3) ko chia hết cho 3
https://olm.vn/hoi-dap/detail/1317447057.html " VÀO ĐI MAN BÀI I HỆT YOU IK "
Vì cộng thêm 1 thì n chia hết cho 2, cộng thêm 2 thì n chia hết cho 3, cộng thêm 3 thì n chia hết cho 4, cộng thêm 4 thì n chia hết cho 5, cộng thêm 5 thì n chia hết cho 6, cộng thêm 6 thì n chia hết cho 7 nên ta có : n chia cho 2 dư 1, n chia cho 3 dư 2, n chia cho 4 dư 3, n chia cho 5 dư 4, n chia cho 6 dư 5 và n chia cho 7 dư 6
\(\Rightarrow\)n-1\(⋮\)2, n-2\(⋮\)3, n-3\(⋮\)4, n-4\(⋮\)5, n-5\(⋮\)6 và n-6\(⋮\)7
\(\Rightarrow\)n-1+2\(⋮\)2, n-2+3\(⋮\)3, n-3+4\(⋮\)4, n-4+5\(⋮\)5, n-5+6\(⋮\)6 và n-6+7\(⋮\)7
\(\Rightarrow\)n-1 chia hết cho cả 2,3,4,5,6,7
\(\Rightarrow\)n-1\(\in\)BC(2,3,4,5,6,7)
Ta có : 2=2
3=3
4=22
5=5
6=2.3
7=7
\(\Rightarrow\)BCNN(2,3,4,5,6,7)=22.3.5.7=420
\(\Rightarrow\)BC(2,3,4,5,6,7)=B(420)={0;420;840;1260;...}
Mà 1<n
n\(\in\){421;841;1261;...}
Vậy n\(\in\){421;841;1261;...}
Xét 2 trường hợp n chẵn và n lẻ sau đây:
A) Nếu n là số lẻ thì tích n số tự nhiên bằng lẻ nên tất cả các số trong n đều là số lẻ, tổng của n số lẻ là một số lẻ mà theo đề bài, tổng của n số là 2012 ( loại trường hợp này)
B) Nếu n là số chẵn thì tích n số tự nhiên là một số chẵn nên trong n phải ít nhất có một số chẵn. Xét 2 khả năng sau:
+ Nếu trong n chỉ có 1 số chẵn thì (n-1) còn lại đều là các số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012( loại khả năng này)
+Nếu trong n có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên n chia hết cho 4.