cho a,b, c là các cạnh của 1 tam giác
chứng minh rằng \(M=\frac{1}{a+b-c}+\frac{1}{a+c-b}+\frac{1}{c+a-b}>hoặcbằng \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{2}{c}\)
\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{\left(1+1\right)^2}{c+a-b+a+b-c}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{2}{b}\)
Cộng lại theo vế rồi chia cho 2, ta có đpcm
Dấu "=" xảy ra khi a = b = c
Bài làm:
Ta xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(BĐT Cauchy dạng cộng mẫu)
Tương tự ta chứng minh được:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)và \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng vế 3 bất đẳng thức trên ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi: \(a=b=c\)
Sa
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\), ta có:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng thế vế thứ 3 bất đắng thức , ta có:
\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=2VP\Rightarrow VT\ge VP\)
Vậy HĐT sảy ra khi a=b=c
CHÚC BẠN HỌC TỐT
Link https://lazi.vn/edu/exercise/cho-a-b-c-la-do-dai-3-canh-cua-mot-tam-giac-va-p-la-nua-chu-vi-chung-minh-1-p-a-1-p-b-1-p-c-21-a-a-b-1-c
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với mọi x,y>0
Ta có: \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)
Tương tự \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)
\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
んuリ イ Sửa A = 3 mà chứng minh được\(A\ge3\)
Ngẫm lại xem có xứng đáng làm CTV không
Dotnhuchomalamnhugioilam!!!
Sửa \(A=3\)
Đặt \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\); \(x;y;z>0\)
\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
\(VT=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)
\(=\frac{1}{2}\left[\left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\right]\ge\frac{1}{2}\left(2+2+2\right)=3\)
\(\)Dấu ''='' xảy ra <=> a = b = c
Lời giải
Theo đề bài thì \(p=\frac{a+b+c}{2}\Rightarrow p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\)
Tương tự: \(p-b=\frac{c+a-b}{2};p-c=\frac{a+b-c}{2}\)
Ta cần c/m: \(\frac{2}{b+c-a}+\frac{2}{c+a-b}+\frac{2}{a+b-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có: \(VT=\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)
\(\ge\frac{4}{2c}+\frac{4}{2a}+\frac{4}{2b}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{\left(đpcm\right)}\)
Ta có:\(p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\Leftrightarrow\frac{1}{p-a}=\frac{2}{b+c-a}\)
Tương tự ta có:
\(\frac{1}{p-b}=\frac{2}{a+c-b}\)
\(\frac{1}{p-c}=\frac{2}{a+b-c}\)
\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=2\left(\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng engel ta có:
\(\frac{1}{b+c-a}=\frac{\left(1+1-1\right)^2}{b+c-a}\ge\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\)
Tương tự,ta có:
\(\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)
\(\frac{1}{a+c-b}\ge\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\)
Cộng vế theo vế ta được:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{đpcm}\)