Viết biểu thức sau dưới dạng đa thức: 4x²+4x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4x+1\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2\)
\(=\left(2x+1\right)^2\)
Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)
Gọi đa thức A(x) sau khi bỏ dấu ngoặc là :
\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)
Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)
Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)
Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)
Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng 0
\(x^2-x+\frac{1}{4}=\left[x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]=\left(x-\frac{1}{2}\right)^2\) ( mình nghĩ phải là \(\frac{1}{4}\) chứ bạn )
\(4x^2-4x+1=\left[\left(2x\right)^2-2.2x.1+1^2\right]=\left(2x-1\right)^2\)
Chúc bạn học tốt ~
\(a,=\left(x+4\right)^2\\ b,=\left(x-6\right)^2\\ c,=-\left(4x^2-4x+1\right)=-\left(2x-1\right)^2\\ d,=\left(x-1\right)^3\)
\(4x^2+4x+1=\left(2x+1\right)^2\)