rút gọn biểu thức
(x+y+z)^2+(X+y-z)^2+(2x-y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+y+z=0
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)
Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)
\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Vậy: \(K=\dfrac{1}{3}\)
\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)
\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)
(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2
= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)
= z2.
x - y + z 2 + z - y 2 + 2(x – y + z)(y – z)
= x - y + z 2 + 2(x – y + z)(y – z) + y - z 2
= x - y + z + y - z 2 = x 2
\(a,\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x\left(x-3\right)\)
\(=x^3-6x^2+12x-27-x^3+x+6x^2-18x\)
\(=-5x-27\)
\(b,\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y+z-x-y\right)^2\)
\(=z^2\)
a)
=\(x^3-6x^2+12x+8-27-x^3+x+6x^2-18x\)
=-5x-19
b)
=\(8x^3+y^3-8x^3+y^3\)
=\(2y^3\)
c)
=(x+y+z-x-y)\(^2\) +x+y
=\(z^2+x+y\)
hc tốt
\(\left(x+y-z\right)^2+2.\left(x+y-z\right).\left(z-y\right)+\left(y-z\right)^2=\left[\left(x+y-z\right)+\left(z-y\right)\right]^2=x^2\)
Sai đề.
\(\left(a\right):\left(x+y\right)^2-\left(x-y\right)^2=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\\ =x^2+2xy+y^2-x^2+2xy-y^2\\ =4xy\)
\(\left(b\right):\left(x-y-z\right)^2+\left(x+y+z\right)^2\\ =\left[\left(x-y\right)-z\right]^2+\left[\left(x+y\right)+z\right]^2\\ =\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x+y\right)^2+2z\left(x+y\right)+z^2\\ =x^2-2xy+y^2-2xz+2yz+z^2+x^2+2xy+y^2+2xz+2yz+z^2\\ =2x^2+2y^2+2z^2+4yz\)
\(\left(c\right):\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =\left(2y\right)^2=4y^2\)
(x-y+z)2 + (z-y)2 + 2.(x-y+z).(y-z)
= (x-y+z)2 + (y-z)2 + 2.(x-y+z).(y-z)
=[(x-y+z)+(y-z)]2
=(x-y+z+y-z)2
=x2
Bài 1:
hằng đẳng thức nha đổi vị trí tth]s 2 xuoong3 và 3 lên 2 ra rồi tự làm nha
\(\left(x+y+z\right)^2+\left(x+y-z\right)^2+\left(2x-y\right)^2\)
\(=x^2+y^2+z^2+2xy+2xz+2yz+\left(x+y-z\right)\left(x+y-z\right)+4x^2-4xy+y^2\)
\(=5x^2+2y^2+z^2-2xy+2xz+2yz+x^2+xy-xz+xy+y^2-yz-xz-yz+z^2\)
\(=6x^2+3y^2+2z^2\)
Chúc bạn học tốt!!!