Cho tam giác ABC vuông góc ở A,ở đường trung tuyến AD kẻ DH song song AC và DK song song AB( H thuộc AB,K thuộc AC).Chứng Minh:
a) H là trung điểm của AB và K là trung diểm của AC.
b)Tứ giác AHDK là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D là trung điểm của BC
DH//AC
Do đó: H là trung điểm của AB
Xét ΔABC có
D là trung điểm của BC
DK//AB
Do đó: K là trung điểm của AC
a) Xét tứ giác AEBN:
+ M là trung điểm của AB (gtt).
+ M là trung điểm của EN (N đối xứng E qua M).
=> Tứ giác AEBN là hình bình hành (dhnb).
b) Xét tam giác ABC vuông tại A: AD là trung tuyến (gt).
=> AD = CD = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).
Xét tam giác HEC và tam giác DEA:
+ EC = EA (E là trung điểm của AC).
+ \(\widehat{HEC}=\widehat{DEA}\) (đối đỉnh).
+ \(\widehat{HCE}=\widehat{DAE}\) (AD // HC).
=> Tam giác HEC = Tam giác DEA (c - g - c).
Xét tứ giác ADCH:
+ AD // HC (gt).
+ AD = HC (Tam giác HEC = Tam giác DEA).
=> Tứ giác ADCH là hình bình hành (dhnb).
Mà AD = CD (cmt).
=> Tứ giác ADCH là hình thoi (dhnb).
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
a: Xét ΔABC có
D là trung điểm của BC
DH//AC
Do đó: H là trung điểm của AB
Xét ΔBAC có
D là trung điểm của BC
DK//AB
Do đó: K là trung điểm của AC
b: Xét tứ giác AKDH có
DH//AK
DK//AH
Do đó: AKDH là hình bình hành
mà \(\widehat{KAH}=90^0\)
nên AKDH là hình chữ nhật