cho A= 3+3\(^2\)+\(3^3+3_{ }^4+...+3^{2016}\)
a) Tính a
b) tim x, biet 2A+3=3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có 3A=\(3^2+3^3+3^4+...+3^{2017}\)
3A-A=\(\left(3^2+3^3+3^4+...+3^{2017}\right)-\left(3+3^2+3^3+...+3^{2016}\right)\)
2A=\(3^{2017}-3\)
A=\(\frac{3^{2017}-3}{2}\)
b)
A=\(\frac{3^{2017}-3}{2}\)
2A=\(3^{2017}-3\)
2A+3=\(3^{2017}-3+3=3^{2017}\)
=>x=2017
\(A=3+3^2+...+3^{2008}\)
\(3A=3.\left(3+3^2+...+3^{2008}\right)\)
\(3A-A=\left(3^2+3^3+...+3^{2009}\right)-\left(3+3^2+...+3^{2008}\right)\)
\(2A=3^{2009}-3\)
\(2A+3=3^{2009}-3+3\)
\(2A+3=3^{2009}\)
Vì \(2A+3=3^x\)hay \(3^{2009}=3^x\)
\(\Rightarrow x=2009\)
Ta có: \(P\le\dfrac{a}{2a+2b+2}+\dfrac{b}{2b+2c+2}+\dfrac{c}{2c+2a+2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}\le1\)
\(\Rightarrow\dfrac{a}{a+b+1}-1+\dfrac{b}{b+c+1}-1+\dfrac{c}{c+a+1}-1\le-2\)
\(\Leftrightarrow\dfrac{b+1}{a+b+1}+\dfrac{c+1}{b+c+1}+\dfrac{a+1}{c+a+1}\ge2\)
Thật vậy, ta có:
\(VT=\dfrac{\left(a+1\right)^2}{\left(a+1\right)\left(a+c+1\right)}+\dfrac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\dfrac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}\)
\(VT\ge\dfrac{\left(a+b+c+3\right)^2}{ab+bc+ca+3\left(a+b+c\right)+6}=\dfrac{2\left(ab+bc+ca\right)+6\left(a+b+c\right)+12}{ab+bc+ca+3\left(a+b+c\right)+6}=2\)
Dấu "=" xảy ra khi \(a=b=c=1\)
tính A tự tính nhé dễ rồi
A=3+32+33+..+32016
=>3A=32+33+...+32017
=>3A-A=(32+33+..+32017)
=>2A= 32017-3
khi đó 2A+3=22017-3+3=32017=3x
=>x=2017
Giải:
a) \(A=3+3^2+3^3+3^4+...+3^{2016}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+...+3^{2017}\)
\(\Leftrightarrow3A-A=2A=3^{2017}-3\)
\(\Leftrightarrow A=\dfrac{3^{2017}-3}{2}\)
b) Có: \(2A=3^{2017}-3\)
Mà \(2A+3=3x\)
Thay vào ta được:
\(3^{2017}-3+3=3x\)
\(\Leftrightarrow3^{2017}=3x\)
\(\Leftrightarrow x=\dfrac{3^{2017}}{3}=3^{2016}\)
Vậy \(x=3^{2016}\).
Chúc bạn học tốt!