K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sai đề : nếu n = 2 thì 10n + 18n - 1 = 102 + 182 - 1 = 100 + 324 - 1 = 423 không chia hết cho 27

22 tháng 10 2016

Vì A chia hết cho 18 

=> A chia hết cho 2 và 9

\(A=10^{33}+8=10...000+8\)  ( 1033 có 33 chữ số 0 )

\(=>\)Tổng của A \(=1000...0+8=1+0+8=9\)

=> A chia hết cho 9  ( 1 )

Vì A có tận cùng là 8 => A chia hết cho 2 ( 2 )

Từ ( 1 ) và ( 2 ) suy ra A chia hết cho 18 ( đpcm )

Phần sau bạn lm tương tự nhé

2 tháng 1 2018

Vì A chia hết cho 18 

=> A chia hết cho 2 và 9

A=1033+8=10...000+8  ( 1033 có 33 chữ số 0 )

=>Tổng của A =1000...0+8=1+0+8=9

=> A chia hết cho 9  ( 1 )

Vì A có tận cùng là 8 => A chia hết cho 2 ( 2 )

Từ ( 1 ) và ( 2 ) suy ra A chia hết cho 18 ( đpcm )

Phần sau bạn làm tương tự nhé

1 tháng 5 2018

ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)

10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1) 

Vậy ...

T I C K cho mình nha

1 tháng 5 2018

toán lớp 7 à sao mà khó vậy

20 tháng 10 2016

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

10 tháng 5 2022