K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

e) \(\sqrt{3+2\sqrt{2}}-5\sqrt{2}\)

\(\sqrt{\sqrt{2}^2+2.1.\sqrt{2}+1^2}\) - 5\(\sqrt{2}\)

\(\sqrt{\left(\sqrt{2}+1\right)^2}\) - 5\(\sqrt{2}\)

\(\left|\sqrt{2}+1\right|\) - \(5\sqrt{2}\)

= 1 + \(\sqrt{2}-5\sqrt{2}\)

= 1 - \(4\sqrt{2}\)

 Chúc bạn học tốt

e: Ta có: \(\sqrt{3+2\sqrt{2}}-5\sqrt{2}\)

\(=\sqrt{2}+1-5\sqrt{2}\)

\(=-4\sqrt{2}+1\)

21 tháng 8 2021

undefined

4)=(4.\(\dfrac{-1}{2}\)).(x3.x).(y.(-y)2).(-z)3

=-2.x4.y3.(-z)3

27 tháng 11 2023

Câu 2:

a: \(y=\left(2x^2-x+1\right)^{\dfrac{1}{3}}\)

=>\(y'=\dfrac{1}{3}\left(2x^2-x+1\right)^{\dfrac{1}{3}-1}\cdot\left(2x^2-x+1\right)'\)

\(=\dfrac{1}{3}\cdot\left(4x-1\right)\left(2x^2-x+1\right)^{-\dfrac{2}{3}}\)

b: \(y=\left(3x+1\right)^{\Omega}\)

=>\(y'=\Omega\cdot\left(3x+1\right)'\cdot\left(3x+1\right)^{\Omega-1}\)

=>\(y'=3\Omega\left(3x+1\right)^{\Omega-1}\)

c: \(y=\sqrt[3]{\dfrac{1}{x-1}}\)

=>\(y'=\dfrac{\left(\dfrac{1}{x-1}\right)'}{3\cdot\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}\)

\(=\dfrac{\dfrac{1'\left(x-1\right)-\left(x-1\right)'\cdot1}{\left(x-1\right)^2}}{\dfrac{3}{\sqrt[3]{\left(x-1\right)^2}}}\)

\(=\dfrac{-x}{\left(x-1\right)^2}\cdot\dfrac{\sqrt[3]{\left(x-1\right)^2}}{3}\)

\(=\dfrac{-x}{\sqrt[3]{\left(x-1\right)^4}\cdot3}\)

d: \(y=log_3\left(\dfrac{x+1}{x-1}\right)\)

\(\Leftrightarrow y'=\dfrac{\left(\dfrac{x+1}{x-1}\right)'}{\dfrac{x+1}{x-1}\cdot ln3}\)

\(\Leftrightarrow y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}:\dfrac{ln3\left(x+1\right)}{x-1}\)

\(\Leftrightarrow y'=\dfrac{x-1-x-1}{\left(x-1\right)^2}\cdot\dfrac{x-1}{ln3\cdot\left(x+1\right)}\)

\(\Leftrightarrow y'=\dfrac{-2}{\left(x-1\right)\cdot\left(x+1\right)\cdot ln3}\)

e: \(y=3^{x^2}\)

=>\(y'=\left(x^2\right)'\cdot ln3\cdot3^{x^2}=2x\cdot ln3\cdot3^{x^2}\)

f: \(y=\left(\dfrac{1}{2}\right)^{x^2-1}\)

=>\(y'=\left(x^2-1\right)'\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}=2x\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}\)

h: \(y=\left(x+1\right)\cdot e^{cosx}\)

=>\(y'=\left(x+1\right)'\cdot e^{cosx}+\left(x+1\right)\cdot\left(e^{cosx}\right)'\)

=>\(y'=e^{cosx}+\left(x+1\right)\cdot\left(cosx\right)'\cdot e^u\)

\(=e^{cosx}+\left(x+1\right)\cdot\left(-sinx\right)\cdot e^u\)

loading...

15 tháng 11 2021

13, B

14, D

15, C

16, A

15 tháng 11 2021

13. B ( chắc vậy )

14. D

15. C

16. D

 

b: Xét \(\left(O\right)\) có

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA

Xét \(\left(O\right)\) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: OM=OA

nên O nằm trên đường trực của MA\(\left(1\right)\)

Ta có: CA=CM

nên C nằm trên đường trực của MA\(\left(2\right)\)

Ta có: OM=OB

nên O nằm trên đường trực của MB\(\left(3\right)\)

Ta có: DM=DB

nên D nằm trên đường trực của MB\(\left(4\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra OC là đường trung trực của MA

hay OC\(\perp\)MA tại E

Từ \(\left(3\right),\left(4\right)\) suy ra OD là đường trung trực của MB

hay OD\(\perp\)MB tại F

Xét tứ giác MEOF có

\(\widehat{MEO}=\widehat{EMF}=\widehat{MFO}=90^0\)

Do đó: MEOF là hình chữ nhật

Câu 4)

Khi vật có khả năng thực hiện công ta nói vật có cơ nănggggg 

Đơn vị của cơ năng là J(jun)

Có 2 dạng chính

 - Thế năng

+ Quả bóng bay trên trời ( quả bóng ở trên cao + khối lượng quả bóng ---> thế năng )

- Động năng

+ Ô tô đang chạy

+ Ô tô có vận tốc + khối lượng oto --> động năngg 

Xét tứ giác GHKI có 

GH//KI

GH=KI

Do đó: GHKI là hình bình hành

Suy ra: GI=HK