K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a\text{)}\:VP=-\left(b^3+3a^2b-3ab^2-a^3\right)=a^2-3a^2b+3ab^2-b^3=\left(a-b\right)^3=VT\left(đpcm\right)\)

\(b\text{)}\left(-a-b\right)^2=\left[\left(-1\right)\left(a+b\right)\right]^2=\left(-1\right)^2.\left(a+b\right)^2=\left(a+b\right)^2\left(đpcm\right)\)

10 tháng 2 2020

sao ko có ai giúp mk vậy

10 tháng 2 2020

Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >

12 tháng 9 2017

đặt \(x^2+4x+8=a\)

=> \(A=a^2+3ax+2x^2=a^2+ax+2ax+2x^2=a\left(a+x\right)+2x\left(a+x\right)\)

          \(=\left(a+x\right)\left(a+2x\right)\)

b) ta có 

\(B=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

đặt \(x^2+8x+11=a\)

=> \(B=\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a-1\right)\left(a+1\right)\)

         \(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\left(x^2+6x+2x+12\right)\)

         \(=\left(x^2+8x+10\right)\left[x\left(x+6\right)+2\left(x+6\right)\right]=\left(x^2+8x+10\right)\left(x+6\right)\left(x+2\right)\)

12 tháng 9 2017

khó thế

11 tháng 7 2018

ai tích mình mình tích lại cho

21 tháng 7 2021

(a² + b²)(c² + d²) ≥ (ac + bd)² \(\forall a,b,c,d\)

↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)² \(\forall a,b,c,d\)

↔ (ad)² + (bc)² ≥ 2abcd \(\forall a,b,c,d\) 

↔ (ad)² - 2abcd + (bc)² ≥ 0 \(\forall a,b,c,d\) 

↔ (ad - bc)² ≥ 0 \(\forall a,b,c,d\) 

=> luôn đúng

Vậy.....

!Chúc Bạn Học Tốt!

14 tháng 7 2016

a) (2+1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2+1)(2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2^2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2^4-1)(2^4+1)....(2^32+1)-2^64

=......

=(2^32-1)(2^32+1)-2^64

=2^64-1-2^64=-1

b)Đặt A=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)+(5^128-3^128)/2

đặt B=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)

\(2B=\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=\left(5^4-3^4\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=.......\)

2B=(5^64-3^64)(5^64+3^64)

2B=5^128-3^128

B=(5^128-3^128)/2 (thế vào đề bài)

=> A=B+(5^128-3^128)/2=(5^128-3^128)/2+(5^128-3^128)/2=\(\frac{2\left(5^{128}-3^{128}\right)}{2}=\left(5^{128}-3^{128}\right)\)

14 tháng 7 2016

a) A = ( 2-1)(2+1)(22+1)...(232+1)-264

         =(22-1)(22+1)(24+1)... -264

       =....

       =264-1-264=1

câu b tương tự nhá

11 tháng 7 2018

Mk c/m ngược lại có đc ko?

\(a,\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3\)

\(\Rightarrow a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

\(\Rightarrow a^3+b^3=a^3+b^3\left(dpcm\right)\)

\(b,\left(a-b\right)^3+3ab\left(a-b\right)=a^3-b^3\)

\(\Rightarrow a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2=a^3-b^3\)

\(\Rightarrow a^3-b^3=a^3-b^3\left(dpcm\right)\)

11 tháng 7 2018

dở sach nâng cao và phát triển 8 ấy

đây là hổ đơ(holder) mà

áp dụng hổ đơ ta có:

\(\left(1+a\right)\left(1+b\right)\left(1+c\right)=\left(1+\sqrt[3]{a}^3\right)\left(1+\sqrt[3]{b}\right)\left(1+\sqrt[3]{c}\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

17 tháng 8 2017

có thể giải = cách khác ko bn?