Cminh các biểu thứ sau luôn âm với mọi x:
a)
b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
b: \(B=-x^2+4x-17\)
\(=-\left(x^2-4x+17\right)\)
\(=-\left(x^2-4x+4+13\right)\)
\(=-\left(x-2\right)^2-13< 0\forall x\)
a) \(A=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(4x-17-x^2=-\left(x^2-4x+4\right)-13=-\left(x-2\right)^2-13\le-13< 0\)
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
\(A=-x^2+3x-7\)
\(=-\left(x^2-3x+7\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}< 0\forall x\)
\(3x-7-x^2=-\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{19}{4}=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}< 0\)
\(-5-\left(x-1\right)\left(x+2\right)=-5-\left(x^2+x-2\right)=-5-x^2-x+2\)
\(=-x^2-x-3=-\left(x+\frac{1}{2}\right)^2-\frac{11}{4}< 0,\forall x\inℝ\)
\(K=-\dfrac{1}{2}x^2-x-1=-\dfrac{1}{2}\left(x^2+2x+1\right)-\dfrac{1}{2}\)
\(K=-\dfrac{1}{2}\left(x+1\right)^2-\dfrac{1}{2}\)
Do \(\left(x+1\right)^2\ge0\Rightarrow-\dfrac{1}{2}\left(x+1\right)^2\le0\Rightarrow-\dfrac{1}{2}\left(x+1\right)^2-\dfrac{1}{2}< 0\) ; \(\forall x\)
\(\Rightarrow K< 0\) với mọi x
a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.
\(B=-10-x^2-6x\)
\(\Rightarrow B=-\left(x^2+6x+10\right)\)
\(\Rightarrow B=-\left(x^2+6x+9+1\right)\)
\(\Rightarrow B=-\left[\left(x+3\right)^2+1\right]\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+1\ge1\)
\(\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1\)
=> Đpcm
B=\(-10-x^2-6x\)
B=\(-x^2-6x-9-1\)
B=\(-\left(x^2+6x+9\right)-1\)
=\(-\left(x+3\right)^2-1\)
Ta có : \(\left(x+3\right)^2\ge0\forall x\)
\(-\left(x+3\right)^2\le0\)
\(-\left(x+3\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
\(-\frac{1}{4}x^2+x-2\)
\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)
\(=-\left(\frac{1}{2}x-1\right)^2-1\)
Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)
Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến
a ) \(-x^2+3x-3\)
\(=-\left(x^2-3x+3\right)\)
\(=-\left(x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right)+\dfrac{3}{4}\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)
\(\Leftrightarrowđpcm\)
b ) \(-3x^2+6x+4\)
\(=-3\left(x^2-2x-\dfrac{4}{3}\right)\)
\(=-3\left(x^2-2x+1\right)-\dfrac{7}{3}\)
\(\Leftrightarrow-3\left(x-1\right)^2-\dfrac{7}{3}\)
\(\Leftrightarrowđpcm.\)
a) \(-x^2+3x-3=-\left(x^2-3x+3\right)\)
\(=-\left(x^2-3x+\dfrac{9}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{3}{4}\)
Vì \(-\left(x-\dfrac{3}{2}\right)^2\le0\forall x\)
Nên \(-\left(x-\dfrac{3}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra khi x = \(\dfrac{3}{2}\).
Vậy biểu thức luôn âm với mọi x.
b) đề sai nha bn, biểu thức này giá trị nhỏ lớn nhất là 7 chứ đâu phải số âm đâu mà luôn âm :v
\(-3x^2+6x+4=-3\left(x^2-2x+1-1\right)+4\)
\(=-3\left(x-1\right)^2+3+4\)
\(=-3\left(x-1\right)^2+7\)
Vì \(-3\left(x-1\right)^2\le0\forall x\)
Nên \(-3\left(x-1\right)^2+7\le7\forall x\)
Dấu "=" xảy ra khi x = 1.