K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

Xét tg ABH vuông tại H có Ma=MB=> MH là đường trung tuyến

=>MH=\(\frac{1}{2}\)AB=>AB=30cm

Xét tg AHC vuông tại H có AN=NC=>HN là đường trung tuyến

=>HN=\(\frac{1}{2}\)AC=>AC=40cm

Xét tg ABC vuông tại A có:

BC2=AB2+AC2(py-ta-go)

=>BC=50cm

Xét tg ABC có góc A=90o,đg cao AH ứng vs cạnh huyền BC.Aps dụng HTL tro tg vuông ta có:

AB2=BC.BH=>BH=18cm

Lại có:AC2=HC.BC=>HC=32cm

AH2=BH.HC =>AH=24cmHỏi đáp Toán

26 tháng 10 2019

Xét ∆ ABC vuông tại A có M là trung điểm AB

=> HM là đường trung tuyến ứng với cạnh huyền AB

=> HM = 1 2 AB => AB = 2HM = 2. 15 = 30 (cm)

Xét ∆ ACH vuông tại H có N là trung điểm AC

=> HN là đường trung tuyến ứng với cạnh huyền AC

=> HN = 1 2 AC => AC = 2HN = 2. 20 = 40 (cm)

Áp dụng định lý Pitago cho ABH vuông tại A có:

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

Ta có: HC = BC – BH = 50 – 18 = 32 (cm)

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

AH.BC = AB.AC => AH.50 = 30.40 => AH = 24 (cm)

Đáp án cần chọn là: D

15 tháng 7 2016

B A C H N M

tam giác AHB vuông tại H có HM là trung tuyến ứng với cạnh huyền AB=> HM=1/2AB=>AB=2HM=2.15=30cm

tam giác AHC vuông tại H có HN là trung tuyến ứng với cạnh huyền AC=>HN=1/2AC=>AC=2HN=2.20=40 cm

tam giác ABC vuông tại A =>\(BC^2=AB^2+AC^2suyraBC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50cm\)

ta có AH.BC=AB.AC=>AH=[30.40]/50=24cm hệ thức lượng tam giác vuông

ta có \(AB^2=BH.BCsuyraBH=\frac{AB^2}{BC}=\frac{30^2}{50}=18cm\)

suy ra HC=BC-BH=50-18=32cm

A B C H M N

Vì M là trung điểm của AB => HM là trung tuyến 

Mà \(\Delta ABH\)vuông tại H 

=> \(HM=\frac{1}{2}AB\)( trong tam giác vuông trung tuyến ứng với cạnh huyền = 1 phần 2 cạnh huyền )

=> AB = 30 cm

Chứng minh tương tự 

=> AC= 40 cm

Xét \(\Delta ABC\)có ( A = 900 )

=> \(BC=\sqrt{AC^2+AB^2}=50\)cm

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)

\(\Rightarrow\frac{1}{AH}=\sqrt{\frac{1}{AB^2}+\frac{1}{AC^2}}=\frac{1}{24}\)

\(\Rightarrow AH=24cm\)

Áp dụng hệ thức cạnh trong tam giác vuông ta có :

\(AB^2=BH.BC\)

\(\Rightarrow BH=AB^2:BC=18cm\)

Vì BH + HC = BC 

\(\Rightarrow HC=50-18=32cm\)

Study well 

1 tháng 7 2018

a) Cm. AH = DE 

Ta có: HD vuông góc với BA (gt)
          ED vuông góc với BA ( BA vuông góc với AC; E thuộc AC)
=> HD // EA

Ta lại có: DA vuông góc với AC ( BA vuông góc với AC; D thuộc AB)
              HE vuông góc với AC (gt)
=> DA // HE

Xét tứ giác DHEA, có;
* HD // EA (cmt)
* DA // HE (cmt)
=> DHEA là hình bình hành (định nghĩa)
=> DE = AH (tính chất của đường chéo) (đpcm)

b) Gọi O là giao điểm của 2 đường chéo DE, AH của hình bình hành DHEA.

Xét tam giác HEC vuông tại E, có:
* K là trung điểm của HC (gt)
=> EK = KH = KC (trung tuyến của tam giác vuông bằng 1/2 cạnh huyền)
=> DI = IH = IB ( chứng minh tương tự)

Xét tam giác DIO và tam giác HIO, có:
* DI = IH (cmt)
* IO là cạnh chung
* OD = OH (DHEA là hình bình hành)
=> tam giác DIO = tam giác HIO (c.c.c)
=> góc IHO = góc IDO ( yếu tố tương ứng)
Mà góc IHO = 90 độ (AH là đường cao)
=> góc IDO = 90 độ 
=> ID vuông góc với DE (1)

Xét tam giác HOK và tam giác EOK, có:
* HO = EO (DHEA là hình bình hành)
* OK là cạnh chung
* KH = KE (cmt)
=> tam giác HOK = tam giác EOK (c.c.c)
=> góc OHK = góc OEK ( yếu tố tương ứng)
Mà góc OHK = 90 độ (AH là đường cao)
=> góc OEK = 90 độ 
=> KE vuông góc với DE (2)

Từ (1), (2) => ID // KE (từ vuông góc đến song song) (đpcm).

4 tháng 8 2021

Cho mình xin câu D thoi ạ

16 tháng 11 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC hay MN//EF

Suy ra MNEF là hthang

Lại có \(MN=\dfrac{1}{2}BC\) và \(EF=EH+HF=\dfrac{1}{2}\left(BH+HC\right)=\dfrac{1}{2}BC\)

Do đó MNEF là hbh

Lại có ME là đtb tg ABH nên ME//AH

Mà AH⊥BC và MN//BC nên ME⊥MN

Vậy MNEF là hcn

24 tháng 7 2018

B M A N C H

Tam giác AHB vuông tại H có HM là trung tuyến

=>  HM = 1/2 AB   => AB = 30 cm

Tam giác AHC vuông tại H có HN là trung tuyến

=>  HN = 1/2 AC  => AC = 40 cm

Áp dụng Pytago ta có:  AB2 + AC2 = BC2

                         =>  BC2 = 302 + 402 = 2500

                         => BC = 50

Áp dụng hệ thức lượng ta có:

AB2 = BH.BC  => \(BH=\frac{AB^2}{BC}=18\)

AC2 = CH.BC  =>  \(CH=\frac{AC^2}{BC}=32\)

HA.BC = AB.AC  =>  \(HA=\frac{AB.AC}{BC}=24\)

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot25=15\cdot20\)

\(\Leftrightarrow AH\cdot25=300\)

hay AH=12(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Vậy: BC=20cm; AH=12cm; HC=16cm

8 tháng 2 2021

Lớp 8 đã học hệ thức lượng đâu bạn, lớp 9 mới học mà