giúp tớ bài này : 1/2-1/4-1/8-....-1/1024
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+...+2^{10}\)
\(2B=2^2+2^3+...+2^{11}\)
\(2B-B=\left(2^2+2^3+...+2^{11}\right)-\left(2+2^2+...+2^{10}\right)\)
\(B=2^{11}-2\)
a)
Từ 1 đến 23 gồm có (29-1) : 2 + 1 = 15 số
15 số gồm có 7.5 cặp
Mà từng cặp số có tổng bằng 30 (tính từng cặp số ở hai đầu)
Vậy S = 30 * 7.5
= 225
=
2A=1+1/2+1/4+1/8+.........+1/512
2A‐A=﴾1+1/2+1/4+1/8+....+1/512﴿‐﴾1/2+1/4+1/8+.....+1/1024﴿
A=1‐1/1024 =1023/1024
vậy A=1023/1024
Đặt A=\(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.........+\frac{1}{1024}\) (1)
Ta có: 2A=\(2+1+\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{512}\) (2)
Từ (1) và (2) \(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{4}+...........+\frac{1}{512}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{1024}\right)\)
\(\Rightarrow A=2-\frac{1}{1024}\)
\(\Rightarrow A=\frac{2047}{1024}\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(\Rightarrow A=1-\frac{1}{1024}=\frac{1023}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}\)
Đặt:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\)
\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)
\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)
\(A=1-\dfrac{1}{2^{10}}\)
\(A=1-\dfrac{1}{1024}=\dfrac{2023}{2024}\)
\(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}\cdot\frac{17}{4}-28\cdot\frac{4}{3}\right):\frac{7}{4}\)
\(=\frac{59}{15}-\frac{29}{4}:\frac{7}{4}=\)\(\frac{59}{15}-\frac{29}{7}=\frac{-22}{105}\)
B = \(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}x\frac{17}{4}-2x\frac{4}{3}\right):\frac{7}{4}\)
= \(\frac{59}{10}x\frac{2}{3}-\left(\frac{119}{12}-\frac{8}{3}\right)x\frac{4}{7}\)
= \(\frac{59}{15}-\frac{29}{4}x\frac{4}{7}=\frac{59}{15}-\frac{29}{7}\)
= \(\frac{-22}{105}\)
C = \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
= \(1-\frac{1}{7}=\frac{6}{7}\)
Đặt \(B=4^{2007}+4^{2006}+...+4^2+4+1\)
\(4B=4^{2008}+4^{2007}+...+4^3+4^2+4\)
\(3B=4B-B=4^{2008}-1\Rightarrow B=\frac{4^{2008}-1}{3}\)
\(A=75.\frac{4^{2008}-1}{3}+25=25.\left(4^{2008}-1\right)+25=25.4^{2008}=100.4^{2007}\) Chia hết cho 100
a ) 13/20
B)
C..........................................................
minh dang tính
=2/6+2/12+2/20+...+2/600
=2(1/(2.3)+1/(3.4)+1/(4.5)+...+1/(24.25)
=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/24-1/25)
=2(1/2-1/25)
=2(25/50-2/50)
=2.23/50
=23/25
Áp dụng bài bạn vừa đăng đó