giúp mình 4 bài này nha
1. Cho \(a+b+c=a^2+b^2+c^2=1\) và \(x:y:z=a:b:c\)
CMR: \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
2. Tìm x,y biết \(\dfrac{x^2+y^2}{10}=\dfrac{x^2-2y^2}{7}\) và \(x^4y^4=81\)
3. Với giá trị nào của x thì \(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\) đạt giá trị nhỏ nhất
4. Với giá trị nào của x thì \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\) đạt giá trị nhỏ nhất
1. Ta có: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\) ( vì \(a+b+c=1\) )
Do đó \(\left(x+y+z\right)^2=\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)( vì \(a^2+b^2+c^2=1\) ).
Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
2. Đặt \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\dfrac{a+b}{10}=\dfrac{a-2b}{7}\) và \(a^2b^2=81\)
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\dfrac{3b}{3}=b\) __(1)__
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{2a+2b}{20}=\dfrac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\dfrac{3a}{27}=\dfrac{a}{9}\)__(2)__
Từ (1) và (2) suy ra \(\dfrac{a}{9}=b\Rightarrow a=9b\)
Do \(a^2b^2=81\) nên \(\left(9b\right)^2.b^2=81\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\) ( vì \(b\ge0\) )
Suy ra: a = 9.1 = 9
Ta có: \(x^2=9\) và \(y^2=1\). Suy ra: \(x=\pm3,y=\pm1\)